scholarly journals Recent follow-up observations of GRBs in the very high energy band with the MAGIC Telescopes

Author(s):  
Alessandro Carosi ◽  
Antonella Antonelli ◽  
Josefa Becerra Gonzalez ◽  
Alessio Berti ◽  
Stefano Covino ◽  
...  
2014 ◽  
Vol 28 ◽  
pp. 1460169 ◽  
Author(s):  
DMITRY KHANGULYAN ◽  
SERGEY V. BOGOVALOV ◽  
FELIX A. AHARONIAN

Observations of the binary pulsar PSR B1259-63/LS2883 in the high energy and very high energy domains have revealed a few quite unusual features. One of the most puzzling phenomena is the bright GeV flare detected with Fermi/LAT in 2011 January, approximately one month after periastron passage. Since the maximum luminosity in the high energy band during the flare nearly achieved the level of the pulsar spin-down energy losses, it is likely that the particles, responsible for this emission component, had a strongly anisotropic distribution, which resulted in the emission enhancement. One of the most prolific scenarios for such an emission enhancement is the Doppler boosting, which is realized in sources with relativistic motions. Interestingly, a number of hydrodynamical simulations have predicted a formation of highly relativistic outflows in binary pulsar systems, therefore scenarios, involving relativistic boosting, are very natural for these systems. However a more detailed analysis of such a possibility, presented in this study, reveals certain limitations which put strict constraints on the maximum luminosity achievable in this scenario. These constraints render the "Doppler boosting" scenario to be less feasible, especially for the synchrotron models.


2010 ◽  
Vol 19 (06) ◽  
pp. 1023-1029
Author(s):  
◽  
JAVIER RICO

MAGIC is a single-dish Cherenkov telescope located on La Palma (Spain), hence with an optimal view on the Northern sky. Sensitive to the 30 GeV–30 TeV energy band, it is nowadays the only ground-based instrument being able to measure high-energy gamma-rays below 100 GeV. With the operation in coincidence with MACIC-II, starting in Fall 2009, the sensitivity will be improved by a factor ~ 2. We review the results obtained by MAGIC on the very-high energy emission from pulsars, binary systems and microquasars.


2008 ◽  
Vol 17 (10) ◽  
pp. 1859-1866
Author(s):  
◽  
J. RICO

We report on the results from the observations in very high energy band (VHE, Eγ ≥ 100 GeV ) of the γ-ray binary LS I +61 303 and the black hole X-ray binary (BHXB) Cygnus X-1. LS I +61 303 was recently discovered at VHE by MAGIC1 and here we present the preliminary results from an extensive observation campaign, comprising 112 observation hours covering 4 orbital cycles, aiming at determining the time-dependent features of the VHE emission. Cygnus X-1 was observed for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable γ-ray signals from Cygnus X-1, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.


2016 ◽  
Vol 12 (S324) ◽  
pp. 70-73
Author(s):  
Alessio Berti ◽  

AbstractGamma-Ray Bursts (GRBs) are the most violent explosions in the Universe, releasing a huge amount of energy in few seconds. While our understanding of the prompt and the afterglow phases has increased with Swift and Fermi, we have very few information about their High Energy (HE, E ≲ 100) emission components. This requires a ground-based experiment able to perform fast follow-up with enough sensitivity above ~ 50 GeV. The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes have been designed to perform fast follow-up on GRBs thanks to fast slewing movement and low energy threshold (~ 50 GeV). Since the beginning of the operations, MAGIC followed-up 89 GRBs in good observational conditions. In this contribution the MAGIC GRBs follow-up campaign and the results which could be obtained by detecting HE and Very High Energy (VHE, E ≳ 100 GeV) γ-rays from GRBs will be reviewed.


2002 ◽  
Vol 19 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Tadashi Kifune

AbstractEvidence of TeV γ-ray emission has been found for only a handful of active galactic nuclei, with detailed investigations limited to the blazars Mrk 421 and Mrk 501. TeV γ-ray astronomy, as the highest energy band, provides important information that is hard to obtain from longer wavelength electromagnetic radiation. The current status of TeV γ-ray studies of active galactic nuclei is summarized and our understanding of the high energy phenomena taking place in active galactic nuclei is outlined, with the prospects for future TeV γ-ray observations also considered.


Author(s):  
Marina Manganaro ◽  
Giovanna Pedaletti ◽  
Marlene Doert ◽  
Denis Bastieri ◽  
Vandad Fallah Ramazani ◽  
...  

S5 0716+714 is a well known BL-Lac object, one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV) by MAGIC happened in 2008. In January 2015 the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with ~ sigma significance (ATel #6999). Rich multi-wavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE and VHE band, together with radio (Metsahovi, OVRO, VLBA, Effelsberg), sub-millimeter (SMA), optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata), X-ray and UV (Swift-XRT and UVOT), in the same time-window and discuss the time variability of the MWL light curves during this impressive outburst.


Sign in / Sign up

Export Citation Format

Share Document