scholarly journals Effective Field Theory and Unitarity in Vector Boson Scattering

Author(s):  
Marco Sekulla ◽  
Wolfgang Kilian ◽  
Thorsten Ohl ◽  
Jürgen Reuter
2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Jacob J. Ethier ◽  
Raquel Gomez-Ambrosio ◽  
Giacomo Magni ◽  
Juan Rojo

AbstractWe present a systematic interpretation of vector boson scattering (VBS) and diboson measurements from the LHC in the framework of the dimension-six standard model effective field theory (SMEFT). We consider all available measurements of VBS fiducial cross-sections and differential distributions from ATLAS and CMS, in most cases based on the full Run II luminosity, and use them to constrain 16 independent directions in the dimension-six EFT parameter space. Compared to the diboson measurements, we find that VBS provides complementary information on several of the operators relevant for the description of the electroweak sector. We also quantify the ultimate EFT reach of VBS measurements via dedicated projections for the high luminosity LHC. Our results motivate the integration of VBS processes in future global SMEFT interpretations of particle physics data.


2012 ◽  
Vol 27 (23) ◽  
pp. 1250128 ◽  
Author(s):  
J. GEGELIA ◽  
G. JAPARIDZE

Effective field theory (EFT) of massive Yang–Mills fields interacting with fermions is considered. Perturbative renormalizability in the framework of EFT is shown. It is argued that the limit of vanishing vector boson mass leads to massless gauge EFT. Possible relevance for the solution to the strong CP problem is discussed.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Junmou Chen ◽  
Chih-Ting Lu ◽  
Yongcheng Wu

Abstract We study the measurement of Higgs boson self-couplings through 2 → 3 vector boson scattering (VBS) processes in the framework of Standard Model effective field theory (SMEFT) at both proton and lepton colliders. The SMEFT contribution to the amplitude of the 2 → 3 VBS processes, taking WLWL → WLWLh and WLWL → hhh as examples, exhibits enhancement with the energy $$ \frac{{\mathcal{A}}^{\mathrm{BSM}}}{{\mathcal{A}}^{\mathrm{SM}}}\sim \frac{E^2}{\Lambda^2} $$ A BSM A SM ~ E 2 Λ 2 , which indicates the sensitivity of these processes to the related dimension-six operators in SMEFT. Simulation of the full processes at both hadron and lepton colliders with a variety of collision energies are performed to estimate the allowed region on c6 and $$ {c}_{\Phi_1} $$ c Φ 1 . Especially we find that, with the help of exclusively choosing longitudinal polarizations in the final states and suitable pT cuts, WWh process is as important as the more widely studied triple Higgs production (hhh) in the measurement of Higgs self-couplings. Our analysis indicates that these processes can play important roles in the measurement of Higgs self-couplings at future 100 TeV pp colliders and muon colliders. However, their cross sections are generally tiny at low energy machines, which makes them much more challenging to explore.


Effective field theory (EFT) is a general method for describing quantum systems with multiple-length scales in a tractable fashion. It allows us to perform precise calculations in established models (such as the standard models of particle physics and cosmology), as well as to concisely parametrize possible effects from physics beyond the standard models. EFTs have become key tools in the theoretical analysis of particle physics experiments and cosmological observations, despite being absent from many textbooks. This volume aims to provide a comprehensive introduction to many of the EFTs in use today, and covers topics that include large-scale structure, WIMPs, dark matter, heavy quark effective theory, flavour physics, soft-collinear effective theory, and more.


2008 ◽  
Author(s):  
Ulf-G. Meiβner ◽  
Hideyuki Sakai ◽  
Kimiko Sekiguchi ◽  
Benjamin F. Gibson

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Hoback ◽  
Sarthak Parikh

Abstract We conjecture a simple set of “Feynman rules” for constructing n-point global conformal blocks in any channel in d spacetime dimensions, for external and exchanged scalar operators for arbitrary n and d. The vertex factors are given in terms of Lauricella hypergeometric functions of one, two or three variables, and the Feynman rules furnish an explicit power-series expansion in powers of cross-ratios. These rules are conjectured based on previously known results in the literature, which include four-, five- and six-point examples as well as the n-point comb channel blocks. We prove these rules for all previously known cases, as well as two new ones: the seven-point block in a new topology, and all even-point blocks in the “OPE channel.” The proof relies on holographic methods, notably the Feynman rules for Mellin amplitudes of tree-level AdS diagrams in a scalar effective field theory, and is easily applicable to any particular choice of a conformal block beyond those considered in this paper.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Zhengwen Liu ◽  
Rafael A. Porto ◽  
Zixin Yang

Abstract Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly covariant framework. We introduce a systematic procedure to compute the total change in momentum and spin in the gravitational scattering of compact objects. For the special case of spins aligned with the orbital angular momentum, we show how to construct the radial action for elliptic-like orbits using the Boundary-to-Bound correspondence. As a paradigmatic example, we solve the scattering problem to next-to-leading PM order with linear and bilinear spin effects and arbitrary initial conditions, incorporating for the first time finite-size corrections. We obtain the aligned-spin radial action from the resulting scattering data, and derive the periastron advance and binding energy for circular orbits. We also provide the (square of the) center-of-mass momentum to $$ \mathcal{O}\left({G}^2\right) $$ O G 2 , which may be used to reconstruct a Hamiltonian. Our results are in perfect agreement with the existent literature, while at the same time extend the knowledge of the PM dynamics of compact binaries at quadratic order in spins.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minyuan Jiang ◽  
Teng Ma ◽  
Jing Shu

Abstract We describe the on-shell method to derive the Renormalization Group (RG) evolution of Wilson coefficients of high dimensional operators at one loop, which is a necessary part in the on-shell construction of the Standard Model Effective Field Theory (SMEFT), and exceptionally efficient based on the amplitude basis in hand. The UV divergence is obtained by firstly calculating the coefficients of scalar bubble integrals by unitary cuts, then subtracting the IR divergence in the massless bubbles, which can be easily read from the collinear factors we obtained for the Standard Model fields. Examples of deriving the anomalous dimensions at dimension six are presented in a pedagogical manner. We also give the results of contributions from the dimension-8 H4D4 operators to the running of V+V−H2 operators, as well as the running of B+B−H2D2n from H4D2n+4 for general n.


Sign in / Sign up

Export Citation Format

Share Document