scholarly journals Hitting statistics from quantum jumps

Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 19
Author(s):  
A. Chia ◽  
T. Paterek ◽  
L. C. Kwek

We define the hitting time for a model of continuous-time open quantum walks in terms of quantum jumps. Our starting point is a master equation in Lindblad form, which can be taken as the quantum analogue of the rate equation for a classical continuous-time Markov chain. The quantum jump method is well known in the quantum optics community and has also been applied to simulate open quantum walks in discrete time. This method however, is well-suited to continuous-time problems. It is shown here that a continuous-time hitting problem is amenable to analysis via quantum jumps: The hitting time can be defined as the time of the first jump. Using this fact, we derive the distribution of hitting times and explicit exressions for its statistical moments. Simple examples are considered to illustrate the final results. We then show that the hitting statistics obtained via quantum jumps is consistent with a previous definition for a measured walk in discrete time [Phys. Rev. A 73, 032341 (2006)] (when generalised to allow for non-unitary evolution and in the limit of small time steps). A caveat of the quantum-jump approach is that it relies on the final state (the state which we want to hit) to share only incoherent edges with other vertices in the graph. We propose a simple remedy to restore the applicability of quantum jumps when this is not the case and show that the hitting-time statistics will again converge to that obtained from the measured discrete walk in appropriate limits.

2018 ◽  
Vol 16 (03) ◽  
pp. 1850023
Author(s):  
Takuya Machida

Discrete-time quantum walks are considered a counterpart of random walks and their study has been getting attention since around 2000. In this paper, we focus on a quantum walk which generates a probability distribution splitting to two parts. The quantum walker with two coin states spreads at points, represented by integers, and we analyze the chance of finding the walker at each position after it carries out a unitary evolution a lot of times. The result is reported as a long-time limit distribution from which one can see an approximation to the finding probability.


2009 ◽  
Vol 9 (3&4) ◽  
pp. 231-254
Author(s):  
D. Emms ◽  
R. Wilson ◽  
E. Hancock

In this paper, we explore analytically and experimentally a quasi-quantum analogue of the hitting time of the continuous-time quantum walk on a graph. For the classical random walk, the hitting time has been shown to be robust to errors in edge weight structure and to lead to spectral clustering algorithms with improved performance. Our analysis shows that the quasi-quantum analogue of the hitting time of the continuous-time quantum walk can be determined via integrals of the Laplacian spectrum, calculated using Gauss-Laguerre quadrature. We analyse the quantum hitting times with reference to their classical counterpart. Specifically, we explore the graph embeddings that preserve hitting time. Experimentally, we show that the quantum hitting times can be used to emphasise cluster-structure.


2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Michael Manighalam ◽  
Mark Kon

Abstract Models of quantum walks which admit continuous time and continuous spacetime limits have recently led to quantum simulation schemes for simulating fermions in relativistic and nonrelativistic regimes (Molfetta GD, Arrighi P. A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019). This work continues the study of relationships between discrete time quantum walks (DTQW) and their ostensive continuum counterparts by developing a more general framework than was done in Molfetta and Arrighi (A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019) to evaluate the continuous time limit of these discrete quantum systems. Under this framework, we prove two constructive theorems concerning which internal discrete transitions (“coins”) admit nontrivial continuum limits. We additionally prove that the continuous space limit of the continuous time limit of the DTQW can only yield massless states which obey the Dirac equation. Finally, we demonstrate that for general coins the continuous time limit of the DTQW can be identified with the canonical continuous time quantum walk when the coin is allowed to transition through the continuous limit process.


2010 ◽  
Vol 20 (6) ◽  
pp. 1079-1090 ◽  
Author(s):  
YUSUKE IDE ◽  
NORIO KONNO

It is well known that many real world networks have a power-law degree distribution (the scale-free property). However, there are no rigorous results for continuous-time quantum walks on such realistic graphs. In this paper, we analyse the space–time behaviour of continuous-time quantum walks and random walks on the threshold network model, which is a reasonable candidate model having the scale-free property. We show that the quantum walker exhibits localisation at the starting point, although the random walker tends to spread uniformly.


Author(s):  
Ivan Bardet ◽  
Hugo Bringuier ◽  
Yan Pautrat ◽  
Clément Pellegrini

2017 ◽  
Vol 17 (1&2) ◽  
pp. 79-105
Author(s):  
Carlos F. Lardizabal

We make use of the Open Quantum Random Walk setting due to S. Attal, F. Petruccione, C. Sabot and I. Sinayskiy in order to discuss hitting times and a quantum version of the Mean Hitting Time Formula from classical probability theory. We study an open quantum notion of hitting probability on a finite collection of sites and with this we are able to describe the problem in terms of linear maps and its matrix representations. After setting an open quantum version of the fundamental matrix for ergodic Markov chains we are able to prove our main result and as consequence a version of the Random Target Lemma. We also study a mean hitting time formula in terms of the minimal polynomial associated to the matrix representation of the quantum walk. We discuss applications of the results to open quantum dynamics on graphs together with open questions.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

Sign in / Sign up

Export Citation Format

Share Document