scholarly journals THE TECHNOLOGY OF WINTER CONCRETING OF MONOLITHIC FRAME STRUCTURES WITH SUBSTANTIATION OF HEAT TREATMENT MODES BY SOLUTIONS OF THE DIFFERENTIAL EQUATION OF THERMAL CONDUCTIVITY OBTAINED BY THE METHOD OF GROUP ANALYSIS

Author(s):  
Alexander Lazarev

An innovative method for calculating thermal fields inside monolithic structures has been developed, based on the use and analysis of nonlinear differential equations. The innovativeness of the method lies in the approach to the analysis of nonlinear physical processes using nonlinear differential equations. Thanks to the method of group analysis, 13 expressions are obtained from complex mathematical equations, which are easy to use and depend on several empirical coefficients. It is assumed that this calculation method is a priori more accurate than the existing ones, as well as available to people at a construction site without higher mathematical education, which makes it a priority for research. The applicability of this method must be proven by linking empirical coefficients and variables to the conditions of the experiments, while obtaining reliable data that will turn out to be more accurate than the existing calculation methods. This article demonstrates a systematic approach to establishing the suitability of using the method of group analysis of differential equations for problems of winter concreting on the basis of laboratory experiments under stationary conditions. The equations were subject to verification, which, according to the physical description, correspond to the real conditions of the course of thermal processes inside monolithic structures. Based on the obtained processing results, it was decided that it was necessary to further study the innovative method in the conditions of the construction site, but only for some expressions that showed the best results at the stage of laboratory tests.

Author(s):  
Виктор Николаевич Орлов ◽  
Людмила Витальевна Мустафина

В работе приводится доказательство теоремы существования и единственности аналитического решения класса нелинейных дифференциальных уравнений третьего порядка, правая часть которого представлена полиномом шестой степени, в комплексной области. Расширен класс рассматриваемых уравнений за счет новой замены переменных. Получена априорная оценка аналитического приближенного решения. Представлен вариант численного эксперимента оптимизации априорных оценок с помощью апостериорных. The article presents a proof of the theorem of the existence and uniqueness of the analytical solution of the class of nonlinear differential equations of the third order, with a polynomial right-hand side of the sixth degree, in the complex domain. The class of the considered equations has been extended by means of a new change of variables. An a priori estimate of the analytical approximate solution is obtained. A variant of the numerical experiment of optimizing a priori estimates using a posteriori estimates is presented.


2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Natalija Tumanova ◽  
Raimondas Čiegis ◽  
Mečislavas Meilūnas

AbstractThis paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved. The identifiability analysis of the parameters of deep centers is performed and the fitting of the model to experimental data is done by using the genetic optimization algorithm. Results of numerical experiments are presented.


Author(s):  
Виктор Николаевич Орлов ◽  
Магомедюсуф Владимирович Гасанов

В настоящей статье дано развитие варианта доказательства теоремы существования и единственности решения рассматриваемого класса нелинейных дифференциальных уравнений, характерной особенностью которых является наличие подвижных особых точек. Представленное доказательство позволяет построить аналитическое приближенное решение, получить его априорные оценки. Апостериорная оценка позволяет оптимизировать априорную оценку. Теоретический материал протестирован с помощью численного эксперимента. This article gives the development of a version of the proof of the existence and uniqueness theorem for the solution of the class of nonlinear differential equations under consideration whose characteristic feature is the presence of movable singular points. The presented proof allows us to construct an analytical approximate solution and obtain its a priori estimates. A posteriori estimation allows to optimize a priori estimation. The theoretical material is tested using a numerical experiment.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Oleksandr Kyriienko ◽  
Annie E. Paine ◽  
Vincent E. Elfving

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


Sign in / Sign up

Export Citation Format

Share Document