scholarly journals Existence theorem for a solution of a class of third order nonlinear differential equations with polynomial right hand side of the seventh degree in a vicinity of a movable singular point

Author(s):  
Виктор Николаевич Орлов ◽  
Магомедюсуф Владимирович Гасанов

В настоящей статье дано развитие варианта доказательства теоремы существования и единственности решения рассматриваемого класса нелинейных дифференциальных уравнений, характерной особенностью которых является наличие подвижных особых точек. Представленное доказательство позволяет построить аналитическое приближенное решение, получить его априорные оценки. Апостериорная оценка позволяет оптимизировать априорную оценку. Теоретический материал протестирован с помощью численного эксперимента. This article gives the development of a version of the proof of the existence and uniqueness theorem for the solution of the class of nonlinear differential equations under consideration whose characteristic feature is the presence of movable singular points. The presented proof allows us to construct an analytical approximate solution and obtain its a priori estimates. A posteriori estimation allows to optimize a priori estimation. The theoretical material is tested using a numerical experiment.

Author(s):  
Виктор Николаевич Орлов ◽  
Людмила Витальевна Мустафина

В работе приводится доказательство теоремы существования и единственности аналитического решения класса нелинейных дифференциальных уравнений третьего порядка, правая часть которого представлена полиномом шестой степени, в комплексной области. Расширен класс рассматриваемых уравнений за счет новой замены переменных. Получена априорная оценка аналитического приближенного решения. Представлен вариант численного эксперимента оптимизации априорных оценок с помощью апостериорных. The article presents a proof of the theorem of the existence and uniqueness of the analytical solution of the class of nonlinear differential equations of the third order, with a polynomial right-hand side of the sixth degree, in the complex domain. The class of the considered equations has been extended by means of a new change of variables. An a priori estimate of the analytical approximate solution is obtained. A variant of the numerical experiment of optimizing a priori estimates using a posteriori estimates is presented.


Author(s):  
Виктор Николаевич Орлов ◽  
Рио-Рита Вадимовна Разакова

В работе рассмотрен класс нелинейных дифференциальных уравнений третьего порядка с полиномиальной правой частью шестой степени. Доказана теорема существования и единственности решения в области аналитичности. Построено аналитическое приближенное решение. Предложен вариант оптимизации априорных оценок с помощью апостериорных. Проведен численный эксперимент. There is a class of third-order nonlinear differential equations with polynomial right part of the sixth degree considered in the paper. The existence and uniqueness theorem of a solution in the domain of analyticity is proved by authors. There is an analytical approximate solution which was constructed by V. Orlov and R. Razakova. A variant of optimization of a priori estimates using posterior ones is proposed by authors. A numerical experiment is carried out too.


2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Natalija Tumanova ◽  
Raimondas Čiegis ◽  
Mečislavas Meilūnas

AbstractThis paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved. The identifiability analysis of the parameters of deep centers is performed and the fitting of the model to experimental data is done by using the genetic optimization algorithm. Results of numerical experiments are presented.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Said Mesloub ◽  
Hassan Eltayeb Gadain

Abstract A priori bounds constitute a crucial and powerful tool in the investigation of initial boundary value problems for linear and nonlinear fractional and integer order differential equations in bounded domains. We present herein a collection of a priori estimates of the solution for an initial boundary value problem for a singular fractional evolution equation (generalized time-fractional wave equation) with mass absorption. The Riemann–Liouville derivative is employed. Results of uniqueness and dependence of the solution upon the data were obtained in two cases, the damped and the undamped case. The uniqueness and continuous dependence (stability of solution) of the solution follows from the obtained a priori estimates in fractional Sobolev spaces. These spaces give what are called weak solutions to our partial differential equations (they are based on the notion of the weak derivatives). The method of energy inequalities is used to obtain different a priori estimates.


Author(s):  
Hanwu Li ◽  
Yongsheng Song

Abstract In this paper, we study the reflected backward stochastic differential equations driven by G-Brownian motion with two reflecting obstacles, which means that the solution lies between two prescribed processes. A new kind of approximate Skorohod condition is proposed to derive the uniqueness and existence of the solutions. The uniqueness can be proved by a priori estimates and the existence is obtained via a penalization method.


2021 ◽  
Vol 263 ◽  
pp. 03019
Author(s):  
Victor Orlov ◽  
Magomedyusuf Gasanov

This article generalizes the previously obtained results of existence and uniqueness theorems for the solution of a third-order nonlinear differential equation in the vicinity of moving singular points in the complex domain, as well as constructs an analytical approximate solution, and obtains a priori estimates of the error of this approximate solution. The study was carried out using the modified method of majorants to solve this equation, which differs from the classical theory, in which this method is applied to the right-hand side of the equation The final point of the article is to conduct a numerical experiment to test the theoretical positions obtained.


2019 ◽  
Vol 9 (1) ◽  
pp. 994-1007 ◽  
Author(s):  
Shiping Lu ◽  
Xingchen Yu

Abstract In this paper, the problem of periodic solutions is studied for second order differential equations with indefinite singularities $$\begin{array}{} \displaystyle x''(t)+ f(x(t))x'(t)+\varphi(t)x^m(t)-\frac{\alpha(t)}{x^\mu(t)}+\frac{\beta(t)}{x^y (t)}=0, \end{array}$$ where f ∈ C((0, +∞), ℝ) may have a singularity at the origin, the signs of φ and α are allowed to change, m is a non-negative constant, μ and y are positive constants. The approach is based on a continuation theorem of Manásevich and Mawhin with techniques of a priori estimates.


Sign in / Sign up

Export Citation Format

Share Document