On the Rate of Convergence in Ergodicity and Continuity Theorems for Multichannel Queuing Systems

1980 ◽  
Vol 24 (2) ◽  
pp. 423-430 ◽  
Author(s):  
I. Akhmarov
Author(s):  
Anastasia L. Kryukova

There are many queuing systems that accept single arrivals, accumulate them and service only as a group. Examples of such systems exist in various areas of human life, from traffic of transport to processing requests on a computer network. Therefore, our study is actual. In this paper some class of finite Markovian queueing models with single arrivals and group services are studied. We considered the forward Kolmogorov system for corresponding class of Markov chains. The method of obtaining bounds of convergence on the rate via the notion of the logarithmic norm of a linear operator function is not applicable here. This approach gives sharp bounds for the situation of essentially non-negative matrix of the corresponding system, but in our case it does not hold. Here we use the method of differential inequalities to obtaining bounds on the rate of convergence to the limiting characteristics for the class of finite Markovian queueing models. We obtain bounds on the rate of convergence and compute the limiting characteristics for a specific non-stationary model too. Note the results can be successfully applied for modeling complex biological systems with possible single births and deaths of a group of particles.


1986 ◽  
Vol 23 (04) ◽  
pp. 1019-1024
Author(s):  
Walter Van Assche

The limit of a product of independent 2 × 2 stochastic matrices is given when the entries of the first column are independent and have the same symmetric beta distribution. The rate of convergence is considered by introducing a stopping time for which asymptotics are given.


Author(s):  
Viktor Afonin ◽  
Vladimir Valer'evich Nikulin

The article focuses on attempt to optimize two well-known Markov systems of queueing: a multichannel queueing system with finite storage, and a multichannel queueing system with limited queue time. In the Markov queuing systems, the intensity of the input stream of requests (requirements, calls, customers, demands) is subject to the Poisson law of the probability distribution of the number of applications in the stream; the intensity of service, as well as the intensity of leaving the application queue is subject to exponential distribution. In a Poisson flow, the time intervals between requirements are subject to the exponential law of a continuous random variable. In the context of Markov queueing systems, there have been obtained significant results, which are expressed in the form of analytical dependencies. These dependencies are used for setting up and numerical solution of the problem stated. The probability of failure in service is taken as a task function; it should be minimized and depends on the intensity of input flow of requests, on the intensity of service, and on the intensity of requests leaving the queue. This, in turn, allows to calculate the maximum relative throughput of a given queuing system. The mentioned algorithm was realized in MATLAB system. The results obtained in the form of descriptive algorithms can be used for testing queueing model systems during peak (unchanged) loads.


Author(s):  
Georgiy Aleksandrovich Popov

The article deals with a two-channel queuing system with a Poisson incoming call flow, in which the application processing time on each of the devices is different. Such models are used, in particular, when describing the operation of the system for selecting service requests in a number of operating systems. A complex system characteristic was introduced at the time of service endings on at least one of the devices, including the queue length, the remaining service time on the occupied device, and the time since the beginning of the current period of employment. This characteristic determines the state of the system at any time. Recurrence relations are obtained that connect this characteristic with its marginal values when there is no queue in the system. The method of introducing additional events was chosen as one of the main methods for analyzing the model. The relationships presented in this article can be used for analysis of the average characteristics of this system, as well as in the process of its simulation. Summarizing the results of work on multichannel systems with an arbitrary number of servicing devices will significantly reduce the time required for simulating complex systems described by sets of multichannel queuing systems.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


Sign in / Sign up

Export Citation Format

Share Document