Numerical Modelling of Traveling Magnetic Field Stirrer for Liquid Lithium

Author(s):  
Evgeniy Shvydkiy ◽  
Sergey Sarapulov ◽  
Valeriy Zaharov ◽  
Kirill Bolotin ◽  
Ivan Smolyanov
Metals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 448 ◽  
Author(s):  
Yanjin Xu ◽  
Lijun Wei ◽  
Baoshuai Han ◽  
Enyu Guo ◽  
Mingyue Wang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 532
Author(s):  
Evgeniy Shvydkiy ◽  
Egbert Baake ◽  
Diana Köppen

Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.


1990 ◽  
Vol 122 ◽  
pp. 228-235
Author(s):  
J.E. Drew

The disks referred to in the title of this paper are specifically those present in cataclysmic variables in which the accreting white dwarf has a relatively weak magnetic field (≪ 1 MG). Such systems are classified either as nova-like variables or as dwarf novae, and are of interest here because they are believed to be novae in quiescence (Ritter and Livio discuss this point elsewhere in this volume).This review aims to do two things: i) to summarise what has been learned about the winds associated with non-magnetic cataclysmic variables both from observation and from numerical modelling, and ii) to outline ideas about the nature of the mass loss mechanism. By contrast with the certainty that nova outflows are the consequence of thermonuclear runaway, it shall be seen that the fundamental cause of mass loss from cataclysmic variables remains obscure. An earlier review of this subject is by Cordova and Howarth (1986). Also of interest are some sections of the monograph on dwarf novae and nova-like variables by LaDous (1989).


Sign in / Sign up

Export Citation Format

Share Document