scholarly journals Potential increase in photosynthetic response of taro (Colocasia esculenta L.) to photon flux density and elevated CO2

2019 ◽  
Vol 40 (1) ◽  
pp. 111-118 ◽  
Author(s):  
V. Ravi ◽  
◽  
S.J. More ◽  
R. Saravanan ◽  
G. Byju ◽  
...  
2000 ◽  
Vol 27 (4) ◽  
pp. 301 ◽  
Author(s):  
Dennis H. Greer ◽  
William A. Laing ◽  
Bruce D. Campbell ◽  
Elizabeth A. Halligan

Five pasture grass species with known differences in responses to elevated CO2 were grown at 18 and 28˚C, 350 and 700 mol mol –1 CO2 and a photon flux density of 700 mol m –2 s –1 in controlled conditions. After 2 (28˚C)–3 (18˚C) weeks growth, plants were transferred to reciprocal temperature conditions and to 70% shade while other plants were maintained as controls. The objective was to impose environmental perturbations to evaluate how carbon supply and sink demand affected CO2 responses in different species. Responses were assessed by biomass accumulation and photosynthesis. Ranking of the growth response to CO2 was similar between 18 and 28˚C. Lolium perenne and Festuca arundinacea showed the lowest response to elevated CO2 and Poa annua and Trifolium repens the highest response. Response to CO2was highest at 28˚C for all species and significantly lower at 18˚C. When transferred to different conditions, the growth response to CO2 of all species changed markedly, and their relative ranking also changed. Photosynthetic responses to CO2 were consistently higher for all species at 28 than at 18˚C, but was enhanced by transfer to low temperature and suppressed by transfer to high temperature. The photosynthetic response to CO2, when multiplied by the leaf area of the plants, was linearly related to the growth response to CO2 across almost all treatments and species. This implies that there is an intrinsic relationship between the responses of the two processes of photosynthesis and growth when plants are exposed to elevated CO2.


2019 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Megumi Yamashita ◽  
Mitsunori Yoshimura

A knowledge of photosynthetic photon flux density (PPFD: μmol m−2 s−1) is crucial for understanding plant physiological processes in photosynthesis. The diffuse component of the global PPFD on a short timescale is required for the accurate modeling of photosynthesis. However, because the PPFD is difficult to determine, it is generally estimated from incident solar radiation (SR: W m−2), which is routinely observed worldwide. To estimate the PPFD from the SR, photosynthetically active radiation (PAR: W m−2) is separated from the SR using the PAR fraction (PF; PAR/SR: unitless), and the PAR is then converted into the PPFD using the quanta-to-energy ratio (Q/E: μmol J−1). In this procedure, PF and Q/E are considered constant values; however, it was reported recently that PF and Q/E vary under different sky conditions. Moreover, the diffuse ratio (DR) is needed to distinguish the diffuse component in the global PAR, and it is known that the DR varies depending on sky conditions. Ground-based whole-sky images can be used for sky-condition monitoring, instead of human-eye interpretation. This study developed a methodology for estimating the global and diffuse PPFD using whole-sky images. Sky-condition factors were derived through whole-sky image processing, and the effects of these factors on the PF, the Q/E of global and diffuse PAR, and the DR were examined. We estimated the global and diffuse PPFD with instantaneous values using the sky-condition factors under various sky conditions, based on which the detailed effects of the sky-condition factors on PF, Q/E, and DR were clarified. The results of the PPFD estimations had small bias errors of approximately +0.3% and +3.8% and relative root mean square errors of approximately 27% and 20% for the global and diffuse PPFD, respectively.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


Sign in / Sign up

Export Citation Format

Share Document