Tracking oxidation of individual iron nanoparticles with atomic resolution using aberration-corrected environmental in situ scanning transmission electron microscopy

2021 ◽  
Author(s):  
Roland Kröger ◽  
2008 ◽  
Vol 14 (S2) ◽  
pp. 436-437 ◽  
Author(s):  
G Yang ◽  
Y Zhao ◽  
K Sader ◽  
A Bleloch ◽  
RF Klie

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2012 ◽  
Vol 18 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Katherine L. Jungjohann ◽  
James E. Evans ◽  
Jeffery A. Aguiar ◽  
Ilke Arslan ◽  
Nigel D. Browning

AbstractObservation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.


2013 ◽  
Vol 19 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Ranjan Ramachandra ◽  
Hendrix Demers ◽  
Niels de Jonge

AbstractThe lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.


Sign in / Sign up

Export Citation Format

Share Document