scholarly journals DIAGNOSING ANGINA USING A SIMPLE NEURAL NETWORK ARCHITECTURE

2006 ◽  
Vol 9 (1) ◽  
pp. 39-43
Author(s):  
Bulgiba AM
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changyan Zhu ◽  
Eng Aik Chan ◽  
You Wang ◽  
Weina Peng ◽  
Ruixiang Guo ◽  
...  

AbstractMultimode fibers (MMFs) have the potential to carry complex images for endoscopy and related applications, but decoding the complex speckle patterns produced by mode-mixing and modal dispersion in MMFs is a serious challenge. Several groups have recently shown that convolutional neural networks (CNNs) can be trained to perform high-fidelity MMF image reconstruction. We find that a considerably simpler neural network architecture, the single hidden layer dense neural network, performs at least as well as previously-used CNNs in terms of image reconstruction fidelity, and is superior in terms of training time and computing resources required. The trained networks can accurately reconstruct MMF images collected over a week after the cessation of the training set, with the dense network performing as well as the CNN over the entire period.


2001 ◽  
Vol 15 (01) ◽  
pp. 11-17
Author(s):  
M. ANDRECUT ◽  
M. K. ALI

In this paper we propose a simple neural network architecture for invariant image recognition. The proposed neural network architecture contains three specialized modules. The neurons from the first module are connected in a cellular neural network structure, which is responsible for image processing: edge detection and segmentation. The second module is a feed forward neural network for invariant feature extraction from the sensorial layer: computation of the pair distribution function and bond angle distribution function. The third module is responsible for image classification. An application to the face recognition problem is also presented.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document