scholarly journals Dissolution Test for Mianserin Hydrochloride in Tablets

2019 ◽  
Vol 3 (2) ◽  
pp. 18-22
Author(s):  
Letícia Lenz Sfair ◽  
Caren Gobetti ◽  
Martin Steppe ◽  
Elfrides Schapoval

A dissolution test for mianserin hydrochloride in coated tablets containing 30 mg was developed and validated using a fast ultraviolet spectrophotometric method. The appropriate conditions were determinate after testing sink conditions, agitation spped and dissolution medium. The sink conditions tested showed that mianserin hydrochloride was soluble in 0.01 and 0.1 M hydrochloric acid (HCl), acetate buffer pH 4.1 and 5.0 and phosphate buffer pH 6.8. Then, dissolution tests were performed to investigate the drug release in each medium. Optimal conditions to carry out the dissolution test were 900 mL 0.1 M HCl and USP apparatus 2 (paddle) at 50 rpm stirring speed. The quantification method was also adapted and validated. The UV method showed specificity, linearity, precision and accuracy. The in vitro dissolution test can be used to evaluate the drug release profile and the data was used as an aid to establish a possible correlation with in vivo data.

2017 ◽  
Vol 15 (2) ◽  
pp. 203-208
Author(s):  
Md Haider Ali ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Selim Reza ◽  
Samira Karim

The aim of this research was to develop and evaluate gastric floating tablets of salbutamol sulphate. The oral delivery of anti-asthmatic salbutamol sulphate tablets were facilitated by preparing floating dosage form which could increase its absorption in the stomach by increasing the gastric residence time of the drug. Floating tablets were formulated by using different polymers like carbopol, xanthan gum, HPMC-K4 MCR and HPMC- K100 MCR with different proportions. A comparative study of normal effervescent tablets of salbutamol sulphate had also been done. The prepared tablets were evaluated for all their physicochemical properties and in vitro buoyancy study. In vitro dissolution studies of the formulations were done in pH 6.8 phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. Percent drug release of the formulations (F-1 to F-11) was from 87.34%- 99.12% after 12 hours. From the results, F-11 was selected as an optimized formulation based on 12 h drug release which showed minimal floating lag time and maximum floating time. On the other hand, 100% drug was released within 2 hours from the F-12 of effervescent salbutamol sulphate tablets in which polymer was absent while gas generating sodium bicarbonate and citric acid were present. The results of the study were consistent and may encourage formulating similar dosage form with other drugs.Dhaka Univ. J. Pharm. Sci. 15(2): 203-208, 2016 (December)


2016 ◽  
Vol 19 (2) ◽  
pp. 219-225 ◽  
Author(s):  
Muhammad Rashedul Islam ◽  
Md Elias Al Mamun ◽  
Md Mizanur Rahman Moghal

The study was carried out to evaluate the release modification of indomethacin press coated tablets through different polymers. Several batches of press coated tablets were prepared with indomethacin and Avicel PH 102. The core tablet was compression coated with minimal compression pressure. Formulation IX was modified by incorporating PEG 6000, sodium chloride and sodium lauryl sulphate (SLS). In vitro dissolution studies of the formulations of different excipients were done at pH 7.2 in phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm and 37 ± 0.5 °C temperature. The drug release data was treated in different mathematical fashion to identify the kinetic behaviour. It was found that, drug release which was inversely proportional to the amount of xanthan gum in the coating formulations was significantly changed by the polymers used in the study. Incorporation of SLS caused the drug to be released in near zero order fashion. Drug release was found to follow Higuchi mechanism for all the formulations. The study reveals that the polymers used may be a significant factor for the discrepancy in release rate of indomethacin.Bangladesh Pharmaceutical Journal 19(2): 219-225, 2016


2012 ◽  
Vol 164 ◽  
pp. 487-491
Author(s):  
Deng Guang Yu ◽  
Xia Wang ◽  
Yao Zu Liao ◽  
Ying Li ◽  
Wei Qian ◽  
...  

An electrohydrodynamic atomization (EHDA) process was exploited to prepare helicid-loaded zein microparticles. SEM observations showed that all the particles prepared under varied voltages were round and solid with their sizes gradually decreased from 3.4 ± 1.7 to 1.1 ± 0.5 μm as the applied voltages rose from 6 to 18 kV. Wide-angle X-ray diffraction analyses demonstrated that helicid had been totally converted into an amorphous state in the zein matrix microparticles. Attenuated total reflectance Fourier transform infrared analysis disclosed that the hydrogen bonding presented between helicid and zein molecules. In vitro dissolution tests verified that the microparticles were able to provide a fine sustained drug release profile. The present study provides an easy way to develop novel biomaterials for drug delivery and for providing sustained drug release profiles.


2021 ◽  
Vol 11 (5) ◽  
pp. 13089-13101

In this study, a sustainable HPLC-UV-DAD method was developed and validated for the determination of allopurinol in tablets and optimization of the dissolution test using factorial design. The separation of the analyte from the sample matrix was achieved in 3.01 minutes in a C8 column (4.6 mm X 150 mm X 5 μm), using mobile phase 0.1 mol L-1 HCl (25%) + ethanol (50%) + ultrapure water (25%) by UV detection at 249 nm. The method presented satisfactory analytical parameters of validation (specificity, selectivity, linearity, stability, precision, accuracy, and robustness), showing no matrix effects. The dissolution test was optimized by complete factorial design 23 and, the optimal conditions were: HCl 0.001 mol L-1, apparatus II (paddle) and 75 rpm. The analytical procedures and dissolution tests were applied to allopurinol tablets marketed in Bahia, Brazil, to evaluate the dissolution studies. The pharmaceuticals had similar dissolution profiles and first-order dissolution kinetics. This new and sustainable HPLC-UV-DAD method is friendly to the environment and can be used for the routine pharmaceutical analysis of allopurinol in fixed dosage forms.


2014 ◽  
Vol 17 (2) ◽  
pp. 207 ◽  
Author(s):  
Yady Juliana Manrique-Torres ◽  
Danielle J Lee ◽  
Faiza Islam ◽  
Lisa M Nissen ◽  
Julie A.Y. Cichero ◽  
...  

Purpose. To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Methods. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Results. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Conclusions. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Author(s):  
Mallikarjuna M. ◽  
Ramakrishna A.

In the present investigation planned to study the less explored sterculia gum as matrix carrier of Budesonide to colon. Developed the formulations from B1 to B4 contains alone sterculia gum and its proportion increased gradually in the formulation. The formulations B5 to B10 contain the sterculia gum in combination with Eudragit S 100 and the hydrophilic, hydrophobic polymer. The budesonide core in coat matrix tablets was prepared by direct compression method. The powder bed of the formulations is evaluated for pre compressional characteristics like bulk density, tapped density, compressibility index and angle of repose. The compressed budesonide core in coat matrix tablets were evaluated for post compressional characteristics like thickness, diameter, hardness, disintegration, friability and to understand the drug release pattern and to correlate the in vivo condition, the in vitro dissolution performed in three different gastro intestinal pH at 1.2, pH 7.4 and pH 6.8 with and without 4% rat cecal content. The in vitro dissolution results of formulations ascertain that sterculia gum alone in formulation uncontrolled the drug release in first 5 hrs and carried lesser amount of drug to colon. The formulations B8 in the first 5 hours released 4.3% and carried the larger amount of drug to colon and in absence of rat cecal content released 90% and in presences of 4% rat cecal content released 99% of drug, indicating the sterculia gum undergoes enzymatic degradation and this formulation is considered as potential in targeting the budesonide to colon in the local ulcerative colitis


Author(s):  
R. Shireesh Kiran ◽  
B. Chandra Shekar ◽  
B. Nagendra Babu

In the current study, gastro-retentive tablets of Ritonavir was developed to increase its oral bioavailability using hydrophilic polymers HPMC K 4M, K 15M, and K 100M as release retarding agents. Polyox WSR 303 was chosen as resin, sodium bicarbonate was used as effervescent agents. The tablets were prepared by direct compression method and FTIR studies revealed that there is no interaction between the drug and polymers used for the formulation. Among all the formulations F21 containing HPMC K 100M, Crospovidone, Polyox WSR 303 and sodium bicarbonate, as gas generating agent was choosen as optimized formulation based on the evaluation parameters, floating lag time (33 sec) and total floating time (>24 h) and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product was shown 98.67% and 95.09 ± 5.01% of drug release respectively. From in vivo bioavailability studies, after oral administration of floating tablet containing 100 mg Ritonavir, the Cmax, Tmax, and AUC0–∞ of optimized gastroretentive formulation were found to be 30.11 ± 1.16μg/mL, 8.00±1.23 h and 173 ± 26.34μg*h/ml, respectively. Cmax and AUC values of optimized formulation were found to be significantly higher than of marketed product, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for improved bioavailability.


2013 ◽  
Vol 2 (10) ◽  
pp. 165-169 ◽  
Author(s):  
Manivannan Rangasamy ◽  
Venkata Krishna Reddy Palnati ◽  
Lakshmi Narayana Rao Bandaru

The present study involves in the formulation and evaluation of sustained release tablets of Voriconazole (250mg). The objective of the present study was to formulate Voriconazole sustained release tablets by wet granulation method by using natural (Xanthan gum, Karaya gum) and semi synthetic polymers (HPMC K100M). Lactose was used as diluting agent, Magnesium stearate was used as a lubricant and Talc was used as a glident. These sustained release tablets can release the drug up to 12 hours in predetermined rate. The formulated powder blend was evaluated for bulk density, tapped density, compressibility index and angle of repose. The formulated tablets were evaluated for physical characteristics of sustained release tablets such as thickness, hardness, friability, weight variation and drug content. The results of the formulations found to be within the limits specified in official books. The tablets were evaluated for In-vitro drug release studies by using USP type I dissolution test apparatus. The dissolution test was performed in 0.1 N HCL for 2 hr and phosphate buffer pH 6.8 for 10hrs. The in-vitro cumulative drug release profile of all formulations F1-F10 at 12 hours showed 84.25% to 99.82% drug release, respectively. From the data it was clear that by increasing the amount of polymer in the formulation the amount of drug release was decreased. Hence, Formulation F9 was the most promising formulation as it gives satisfactory release (99.82%) for 12 hours and F9 found to be the best formulation.DOI: http://dx.doi.org/10.3329/icpj.v2i10.16410 International Current Pharmaceutical Journal, September 2013, 2(10): 165-169


Sign in / Sign up

Export Citation Format

Share Document