scholarly journals Design and Evaluation of Colon Specific Delivery of Budesonide Core in Coat Matrix Tablet Used In Local Ulcerative Colitis

Author(s):  
Mallikarjuna M. ◽  
Ramakrishna A.

In the present investigation planned to study the less explored sterculia gum as matrix carrier of Budesonide to colon. Developed the formulations from B1 to B4 contains alone sterculia gum and its proportion increased gradually in the formulation. The formulations B5 to B10 contain the sterculia gum in combination with Eudragit S 100 and the hydrophilic, hydrophobic polymer. The budesonide core in coat matrix tablets was prepared by direct compression method. The powder bed of the formulations is evaluated for pre compressional characteristics like bulk density, tapped density, compressibility index and angle of repose. The compressed budesonide core in coat matrix tablets were evaluated for post compressional characteristics like thickness, diameter, hardness, disintegration, friability and to understand the drug release pattern and to correlate the in vivo condition, the in vitro dissolution performed in three different gastro intestinal pH at 1.2, pH 7.4 and pH 6.8 with and without 4% rat cecal content. The in vitro dissolution results of formulations ascertain that sterculia gum alone in formulation uncontrolled the drug release in first 5 hrs and carried lesser amount of drug to colon. The formulations B8 in the first 5 hours released 4.3% and carried the larger amount of drug to colon and in absence of rat cecal content released 90% and in presences of 4% rat cecal content released 99% of drug, indicating the sterculia gum undergoes enzymatic degradation and this formulation is considered as potential in targeting the budesonide to colon in the local ulcerative colitis

2012 ◽  
Vol 1 (11) ◽  
pp. 376-383 ◽  
Author(s):  
M Mallikarjuna Gouda ◽  
A Ramakrishna Shabaraya ◽  
S M Shanta Kumar

Current study is to develop the colon targeted matrix tablet using the natural polysaccharide sterculia gum as carrier and model drug ciprofloxacin HCl. The matrix tablets were prepared by wet granulation technology using the various proportions of sterculia gum with carbopol 934 P, sterculia gum and ethyl cellulose polymer blends. Granules of all formulations were evaluated for rheological, post compressional properties and in vitro dissolution study in different pH buffers of pH 1.2 , pH 7.4 , pH 6.8 (saline phosphate buffer) without and with 4% rat cecal content in order to mimic GIT condition . Formulation SGC2 to SGC4 and SGE7 to SGE9 has released 13.6% to 38.9% in the initial 5h and released more amount of drug in stomach and small intestine than colon. Formulation SGC5 containing 45% of sterculia gum and 25% carbopol 934 p and Formulation SGE10 containing 45% of sterculia gum and 25% ethyl cellulose has released minimum 10.91 % to 13.04 % in the initial 5h and sustained the drug release up to 24 h and at the end of study released 75% to 79.99%. Formulations with 4% rat cecal content at the end of 24 h study drug released is 90.44% to 95.33% indicating higher amount of drug release is due to enzymatic break down of sterculia gum in the matrix tablet. Hence the above results conclude that the formulation SGC5 and SGE10 are potential in targeting the drug to colon to treat irritable bowel disease.DOI: http://dx.doi.org/10.3329/icpj.v1i11.12064 International Current Pharmaceutical Journal 2012, 1(11): 376-383


2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


Author(s):  
CHINNA ESWARAIAH M ◽  
JAYA S

Objective: The objective of the present study was to formulate the effervescent floating matrix tablet of metronidazole and to evaluate the effect of varying concentrations of hydrophilic polymers on drug release. Methods: Drug excipients interaction was studied by Fourier transform infrared spectrophotometer. The effervescent floating matrix tablets were prepared by direct compression technique using hydroxypropyl methylcellulose (HPMCK4) and xanthan gum alone and in combination as release retardants. Microcrystalline cellulose was used as diluent. Sodium bicarbonate was used as effervescent agent. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity, buoyancy time, and in vitro dissolution. Results: Micromeritic properties and post-compression parameters were evaluated and all the parameters were found within the acceptable limit. The drug release data were subjected to different models to evaluate release kinetics and mechanism of drug release. The matrix tablets prepared with xanthan gum and a mixture of xanthan gum and HPMCK4 were retarded the drug release up to 12 h. The release mechanism of metronidazole was evaluated on the basis of release exponent n value in Peppas model. The n value of the formulations ranged from 0.46 to 0.89 which indicated Case II transport and zero-order release. Conclusion: Floating matrix tablet is the simple, efficient, and economic method to sustain the release of metronidazole to eradicate Helicobacter pylori in peptic ulcer disease.


1970 ◽  
Vol 8 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Bishyajit Kumar Biswas ◽  
Abu Shara Shasur Rouf

The objective of this study was to develop a sustained release matrix tablet of aceclofenac usinghydroxypropyl methylcellulose (HPMC K15M and HPMC K100M CR) in various proportions as release controllingfactor by direct compression method. The powders for tableting were evaluated for angle of repose, loose bulkdensity, tapped bulk density, compressibility index, total porosity and drug content etc. The tablets were subjected tothickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolutionstudy was carried out for 24 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus inphosphate buffer (pH 7.4). The granules showed satisfactory flow properties, compressibility index and drug contentetc. All the tablets complied with pharmacopoeial specifications. The results of dissolution studies indicated that theformulations F-2 and F-3 could extend the drug release up to 24 hours. By comparing the dissolution profiles with themarketed product, it revealed that the formulations exhibited similar drug release profile. From this study, a decreasein release kinetics of the drug was observed when the polymer concentration was increased. Kinetic modeling of invitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport toanomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. Thedrug release followed both diffusion and erosion mechanism in all cases. The drug release from these formulationswas satisfactory after 3 months storage in 40°C and 75% RH. Besides, this study explored the optimum concentrationand effect of polymer(s) on acelofenac release pattern from the tablet matrix for 24 hour period.Key words: Aceclofenac; sustained release; hydrophillic matrix; HPMC; direct compression.DOI: 10.3329/dujps.v8i1.5332Dhaka Univ. J. Pharm. Sci. 8(1): 23-30, 2009 (June)


2005 ◽  
Vol 73 (1) ◽  
pp. 59-74
Author(s):  
Lütfi Genç ◽  
A. Kıran

Sustained release matrix tablets of clarithromycin were prepared using different polymers as Hydroxypropyl methylcellulose (H PMC), Carbopol 934 and Eudragit RL/PO by direct compression technique. For the quality control of these formulations, weight deviation, hardness, friability, diameter-height ratio, content uniformity of the active substance and in vitro dissolution technique were performed. HPLC was used for the assay of clarithromycin and the assay method was validated. Dissolution profiles of the tablets were plotted and evaluated kinetically. The effects on drug release of polymer type and concentrations were investigated by 23 factorial design. The tablets containing HPMC, Carbopol 934 and Eudragit RLIPO were found suitably to sustain drug release


2020 ◽  
Vol 8 (02) ◽  
pp. 40-45
Author(s):  
Chhitij Thapa ◽  
Roma Chaudhary

INTRODUCTION Domperidone is a unique compound with gastro kinetic and antiemetic effects. It is used in the management of disorder by impaired motility like gastroesophageal reflux (in some instances), gastroparesis, dyspepsia, heartburn, epigastric pain, nausea, vomiting, and colonic inertia. The sustained release system is a widely accepted approach for slow drug release over an extended period to address the challenges of conventional oral delivery, including dosing frequency, drug safety, and efficacy. The study aims to formulate a domperidone sustained release tablet and compare the dissolution rate with the marketed formulations. MATERIAL AND METHODS Sustained release matrix tablets of domperidone were prepared by wet granulation method using different polymers such as HPMC K4M, ethyl cellulose, Gum acacia. Pre-compression studies like angle of repose, bulk density, tapped density, Carr's index, and Hausner’s ratio, and post-compression studies like weight variation, thickness, hardness, friability, drug content, and in-vitro drug release were evaluated.   RESULTS The release profile of domperidone sustained-release tablets was studied spectrophotometrically. The in-vitro dissolution study suggests the minimum %-cumulative drug release with 98.33% in F5. The %-cumulative drug release was maximum in F3 with 99.69%. The in-vitro drug release of all the formulations was non-significant compared to the marketed formulation (p<0.05), exhibiting the sustained-release property by all the formulations. CONCLUSION The pre-compression study concludes the better flow property of the granules of different formulations. The sustained release domperidone tablets were prepared successfully by the wet granulation method. The post-compression parameters of different formulations were within the acceptable range.


Author(s):  
Poornima P ◽  
Abbulu K ◽  
Mukkanti K

The present investigation concerns the development of the repaglinide floating matrix tablets, which after oral administration are designed to prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. FTIR studies revealed that there is no interaction between the drug and polymers used for the formulation. Among all the formulations F21 containing HPMC K1500 PH PRM, Polyox WSR-303 and Sodium bicarbonate, as gas generating agent was selected as optimized formulation based on physico chemical properties, floating lag time (36 sec) and total floating time (>24 h). From in vitro dissolution studies, the optimized formulation F21 showed drug release of 98.92±5.19% within 24h whereas 95.09±5.01% of the drug was released from the marketed product within 1h. The major mechanism of drug release follows zero order kinetics and non-Fickian transport by coupled diffusion and erosion. In vivo experiments supported the expectations in prolonging the gastric residence time in the fasted state in beagle dogs. The mean gastric residence time for the tested tablets was 270 min±60. This result is encouraging, because a longer gastric residence time is an important condition for higher bioavailability of the drugs included in the prolonged or controlled release dosage forms.


Author(s):  
ASHWIN K ◽  
RAMA MOHAN REDDY T

Objective: The aim was to design, formulate, and evaluate the trilayer matrix tablets incorporated with quinapril for extend drug release. Methods: Quinapril trilayer matrix tablets were formulated using design of experiment software wherein initially 27 formulations (QF1-QF27) were designed for active layer from which one best formulation was chosen based on drug content, swelling index and in vitro release studies. The chosen formulation was formulated into extended release trilayed matrix tablet by varying proportions of polymers by direct compression and was evaluated for various physicochemical parameters, drug release. Best formulation was characterized for Fourier transform infrared (FTIR), stability, and pharmacokinetic study. Results: Out of 27 formulations highest drug release was exhibited by QF16 (98.85%) which was formulated into trilayer matrix tablets (AQF16- HQF16). Out of which EQF16 was found to exhibit highest values with 98.42% swelling index, 99.56% drug content, and 99.72% drug release in 24 h. All quinapril trilayer formulations showed zero-order and first-order for marketed product. The optimized formulation EQF16 was found to exhibit no interaction with excipients interpreted by FTIR and no significant changes were observed after loading for stability. In vivo studies conducted using optimized formulation EQF16 attained peak drug concentration (Tmax) of 4.0±0.06 and 1.0±0.03 h for the optimized and commercial formulations, respectively, while mean maximum drug concentration (Cmax) was 302.64±0.07 ng/mL and was significant (p<0.05) as compared to the quinapril marketed product formulation 358.78±0.75 ng/mL. Conclusion: Hence, quinapril was successfully formulated into trilayer matrix tablet and found to be stable.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (04) ◽  
pp. 28-36
Author(s):  
R. R Karmarkar ◽  
◽  
M. P Wagh ◽  
S.R Baviskar ◽  
S.H Patil ◽  
...  

The aim of the present study was to evaluate carboxy methyl tamarind kernal powder as a novel drug release retarding agent. To evaluate the same, sustained release matrix tablets of stavudine were prepared by using HPMC K4M and carboxy methyl tamarind kernal powder, by using a direct compression technique. The formulations were prepared by using different drug: polymer ratios into formulations such as F1 to F9. The compressed tablets were evaluated for thickness, hardness, friability, drug content and in vitro dissolution rates. Formulation F6, having a hardness of 5.46 ± 0.25, showed the desired release profile for a period of 24 h in simulated intestinal fluids (pH 7.4). Kinetic data treatment indicated that the release of stavudine from the matrix tablet follows coupling of diffusion and erosion mechanisms. The study proves that the optimized sustained release tablet is capable of releasing the drug in a sustained manner for 24 h.


Author(s):  
KifayatUllah Shah ◽  
Gul Majid Khan ◽  
ShefaatUllah Shah ◽  
Asim Ur Rehman ◽  
Abdul Wahab ◽  
...  

This study presents sustained releasemicroencapsulation of Diltiazem HCL. Its in-vitro dissolution study in phosphate buffer pH 7.4 as dissolution medium and in vivo behaviour in animal subjects. The microcapsules were prepared using polymers Ethocel 7P and Ethocel 7FP at two different drug to polymer (D: P) ratios i.e. 1:5 and 1:10 and the effect of concentration was observed on drug release behaviour. The prepared microcapsules were evaluated for different physical characteristics i.e. Bulk density, Tap density, Compressibility index, Hausner’s ratio and Angle of repose. Characterization of the developed microcapsules was carried out using Differential Scanning Calorimetery and Fourier Transform Infrared Spectroscopy while Scanning Electron Microscopy was performed to observe the morphology of the microcapsules. Model dependent and in dependent approaches were used to find out the drug transport mechanism and to compare the drug release profiles with standard formulation respectively. All the formulations show anomalous, non-Fickian diffusion mechanism and the data was best fitted in Korsmeyer’sPeppas equation. While carrying out in vivo studies, simple and rapid HPLC methods were developed which revealed optimum serum concentration (Cmax) levels for the developed microcapsules predicting least chances of side or adverse effects.


Sign in / Sign up

Export Citation Format

Share Document