scholarly journals Placenames in Yuwaalaraay, Yuwaaliyaay and Gamilaraay Languages of North-West New South Wales

Author(s):  
Anna Ash
1851 ◽  
Vol 2 ◽  
pp. 239-240
Author(s):  
Thomas Anderson

About thirty years ago a species of manna, obtained from the Eucalyptus Mannifera, was brought from New South Wales, and was examined by Dr Thomas Thomson, and afterwards by Professor Johnston, both of whom ascertained it to contain a new species of sugar, different from the mannite which exists in ordinary manna. The author had, through the kindness of Mr Sheriff Cay, an opportunity of examining a very different species of manna, remarkable both from its chemical constitution, and from its possessing a definitely organised structure. This substance was discovered by Mr Robert Cay in 1844, in the interior of Australia Felix, to the north and north-west of Melbourne, where it occurs at certain seasons on the leaves of the Mallee plant, Eucalyptus Dumosa, and is known to the natives by the name of Lerp.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 443 ◽  
Author(s):  
Hiep Nguyen Duc ◽  
Lisa Chang ◽  
Toan Trieu ◽  
David Salter ◽  
Yvonne Scorgie

Ozone and fine particles (PM2.5) are the two main air pollutants of concern in the New South Wales Greater Metropolitan Region (NSW GMR) due to their contribution to poor air quality days in the region. This paper focuses on source contributions to ambient ozone concentrations for different parts of the NSW GMR, based on source emissions across the greater Sydney region. The observation-based Integrated Empirical Rate model (IER) was applied to delineate the different regions within the GMR based on the photochemical smog profile of each region. Ozone source contribution was then modelled using the CCAM-CTM (Cubic Conformal Atmospheric model-Chemical Transport model) modelling system and the latest air emission inventory for the greater Sydney region. Source contributions to ozone varied between regions, and also varied depending on the air quality metric applied (e.g., average or maximum ozone). Biogenic volatile organic compound (VOC) emissions were found to contribute significantly to median and maximum ozone concentration in North West Sydney during summer. After commercial and domestic sources, power generation was found to be the next largest anthropogenic source of maximum ozone concentrations in North West Sydney. However, in South West Sydney, beside commercial and domestic sources, on-road vehicles were predicted to be the most significant contributor to maximum ozone levels, followed by biogenic sources and power stations. The results provide information that policy makers can use to devise various options to control ozone levels in different parts of the NSW Greater Metropolitan Region.


1993 ◽  
Vol 33 (2) ◽  
pp. 245 ◽  
Author(s):  
PG Tow

The persistence and water use efficiency of Digitaria eriantha spp. eriantha and Hunter river lucerne were compared on red solodic soil with a hardsetting surface and poor internal drainage, on the North- West Slopes of New South Wales. After prolonged watering, the profile was wet to a depth of 48 � 1.5 cm, with an available moisture store of 90 mm. Over 3 years, persistence of digitaria was excellent. The population of lucerne was reduced following flooding at summer temperatures, Dry matter production of nitrogen (N) fertilised digitaria per mm warm season rainfall was similar to that of tropical grasses adapted to comparable rainfall environments in subtropical Queensland. Lucerne dry matter per mm rainfall was only about half that of digitaria (3.2 v. 6.3 kg). Lucerne grew well in mixture with digitaria except under prolonged wet soil conditions in summer. Artificial solodic profiles were constructed in the glasshouse to compare digitaria and lucerne in monoculture and mixture under varying temperature, moisture, and N regimes. Lucerne showed sensitivity to both high and low moisture levels at summer temperatures but performed very well at spring temperatures and moderate moisture levels where the mean evapotranspiration ratio was 400 g water per g dry matter. Water use efficiency was higher in digitaria than in lucerne, except at spring temperatures without added N. Water use efficiency of the mixture was always similar to that of the most efficient monoculture of the particular treatment.


1938 ◽  
Vol 37 (4) ◽  
pp. 316-317 ◽  
Author(s):  
A. C. Cameron

1985 ◽  
Vol 7 (2) ◽  
pp. 80 ◽  
Author(s):  
WE Mulham

Following a sequence of favourable years in which pasture growth over much of the arid zone of Australia reached very high ievels, controlled burns were carried out on two contrasting vegetation types in the extreme north-west of New South Wales. A wheei-point apparatus was used to measure subse- quent changes in botanical composition and foliage cover over a four year period. On a pasture periodically dominated by Mitchell grass (Astrebla spp.) burning while growing conditions were favourable resulted in only a small long- term decrease in the cover of Mitchell grass. In the short-term all chenopod species were eliminated and a wider range and greater abundance of annual forbs were promoted in the following spring. On a similar area burned by wildfire in a year of low summer rainfall the response from Mitchell grass was much poorer and botanical composition of the pasture present in the following spring differed from that which developed in the spring following the controlled burn. It also differed from that of the unburnt pasture. The major differences were due to the response of forb species and are attributed to variation in seasonal rainfall. On a dune-system pasture the dominant grasses were species of Aristida and Enneapogon. These are relatively short-lived and appear to have little ability to regrow from the butt after fire. Their slow regeneration after the burn was reflected in the substantial increase in relative abundance of perennial forbs in the following autumn, and of annual forbs the next spring. Although fire appeared to have no long-term effect on the pasture it dramatically reduced tree and shrub numbers. It is suggested that during years in which abnormal quantities of Mitchell grass are present in this region, controlled burning could be a useful form of management. A mosaic of patches burnt at different times would reduce the potential for wide-scale wildfires, provide refuge areas for stock and wildlife in the event of wildfire, and promote a wider choice of plant material for grazing animals. However, in dune-systems vegetation, removal of the pasture cover and reduction of the tree and shrub density would constitute an erosion risk.


1981 ◽  
Vol 29 (2) ◽  
pp. 121 ◽  
Author(s):  
GM Lodge

Emergence and survival of the seedlings of warm-season native perennial grasses Aristida ramosa R.Br., Bothriochloa macra (Steud.) S . T. Blake, Dichanthium sericeum (R.Br.) Camus, Sporobolus elongatus R.Br., Eragvostis leptostachya Steud. and Chloris truncata R.Br. and the cool-season species Stipa variabilis Hughes and Danthonia linkii Kunth were studied in both native pastures and sown monospecific plots on the north- west slopes of New South Wales. The most favourable period for the successful emergence and establishment of warm-season grasses was from mid summer to early autumn. Cool-season native perennial grasses established best from seedlings that appeared from mid autumn to late winter. Few seedlings were observed to germinate in spring, probably as a result of large variations in temperature, low minimum temperatures or intra and interspecific competition. Seedlings growing in native pasture spent long periods in the vegetative phase compared to the early flowering of seedlings in the sown plots. In the pasture studied only two seedlings flowered over 700 days after emergence, and many others after persisting for up to 2 years died without producing seed. These findings indicate that the seedlings in these native pastures were under considerable stress and that the adult populations of the species examined were relatively stable and little recruitment occurred.


2003 ◽  
Vol 43 (6) ◽  
pp. 539 ◽  
Author(s):  
G. M. Lodge ◽  
S. R. Murphy ◽  
S. Harden

An experimental site was established in 1997 on the North-West Slopes of New South Wales to further investigate the use of strategic grazing management to improve the persistence of phalaris (Phalaris aquatica cv.�Sirosa) and subsequent effects on animal production and soil water content. The pasture was sown in 1992 to Sirosa phalaris, subterranean clover (Trifolium subterraneum var. subterraneum cv. Seaton Park) and lucerne (Medicago sativa cv. Aurora). Four grazing treatments were applied in a randomised 3-replicate design. Treatments consisted of continuous grazing at 12.3 sheep/ha (C12 or control); continuous grazing at 6 sheep/ha (C6), and 2� spring and autumn strategies of either resting from grazing for 6 weeks in each season (SAR0), or reducing stocking rate from 12.3 to 4.0 sheep/ha (SAR4). Despite annual applications of fertiliser and high clover content, Sirosa phalaris herbage mass in plots continuously grazed at 12.3 sheep/ha declined from a mean of 3300 kg DM/ha in spring 1997 to < 700 kg DM/ha by May 1998. At the end of the study (February 2001), Sirosa mean herbage mass in these plots was 670 kg DM/ha and lower (P < 0.05) than for the other treatments (mean value 5400 kg DM/ha). These marked changes in herbage mass, and the degradation of the Sirosa-based pasture to an annual pasture by continuous grazing at 12.3 sheep/ha, were not generally reflected in either short-term animal production or substantial differences in soil water content. Wool production (kg/head) was not significantly different among treatments each year. Compared with continuous grazing at 12.3 sheep/ha, sheep liveweights were higher (P < 0.05) in plots continuously grazed at 6.1 sheep/ha from November 1997 to February 1999. However, from February 1999 to 2001, sheep liveweights in the 2 treatments with the highest Sirosa phalaris content were lower (P < 0.05) than those continuously grazed at 12.3 sheep/ha. Only the soil water content for the C6 and SAR4 treatments at 0–30�cm was significantly different to the control treatment, but the differences were predicted to be < 2.5 mm/year. In the root zone (0–90 cm), mean soil water content ranged from 159 to 309 mm (mean 220 mm), while plant available water (soil water content – soil water content at –1500 kPa) was a mean of 79 mm, ranging from 11 to 168 mm.


2011 ◽  
Author(s):  
Peter Massey ◽  
Ben Polkinghorne ◽  
David Durrheim ◽  
Tony Lower ◽  
Rick Speare

Author(s):  
Hiep Nguyen Duc ◽  
Lisa T.-C. Chang ◽  
Toan Trieu ◽  
David Salter ◽  
Yvonne Scorgie

Ozone and fine particles (PM2.5) are the two main air pollutants of concern in the New South Wales Greater Metropolitan Region (NSW GMR) region due to their contribution to poor air quality days in the region. This paper focuses on source contributions to ambient ozone concentrations for different parts of the NSW GMR, based on source emissions across the greater Sydney region. The observation-based Integrated Empirical Rate Model (IER) was applied to delineate the different regions within the GMR based on the photochemical smog profile of each region. Ozone source contribution is then modelled using the CCAM-CTM (Cubic Conformal Atmospheric Model-Chemical Transport Model) modelling system and the latest air emission inventory for the greater Sydney region. Source contributions to ozone varied between regions, and also varied depending on the air quality metric applied (e.g., average or maximum ozone). Biogenic volatile organic compound (VOC) emissions were found to contribute significantly to median and maximum ozone concentration in North West Sydney during summer. After commercial domestic, power station was found to be the next largest anthropogenic source of maximum ozone concentrations in North West Sydney. However, in South West Sydney, beside commercial and domestic sources, on-road vehicles were predicted to be the most significant contributor to maximum ozone levels, followed by biogenic sources and power stations. The results provide information which policy makers can devise various options to control ozone levels in different parts of the NSW Greater Metropolitan Region.


2021 ◽  
Vol 5 (2) ◽  
pp. 58-72
Author(s):  
Neil Argent

Background   In the contemporary academic literature, rural population decline has generally been regarded as a long-running and almost natural phenomenon. Aims   This paper examines the complex temporal, spatial and cultural dynamics of the population of an inland, largely agriculturally-dependent rural region, the New South Wales New England & North West Statistical Division (SD), from the late 1990s to the 2016 Census. It investigates the key demographic processes that have driven the region’s spatially and temporally-uneven experiences of population change – including decline – over this tumultuous period, using these as portents of the regional population’s likely future trajectories. Data and methods   The analysis draws on Australian Bureau of Statistics Census data for the SD’s population as a whole, and for the non-Indigenous and Indigenous segments of the population. Results   The analysis identifies that a profound ageing process is underway across the entire region, is becoming more severe with the passing years, and leading to natural decrease for some Shires. However, the SD’s Indigenous population presents a striking contrast to the non-indigenous one, growing rapidly, increasing its share of the population and is a force for demographic rejuvenation. Conclusions   The analysis reveals that a profound ageing process is underway across the entire SD and is becoming more severe with the passing years. The SD’s Indigenous population presents a striking contrast to the non-Indigenous, growing rapidly, increasing its share of the population – particularly in the western-most LGAs – and is a force for demographic rejuvenation.


Sign in / Sign up

Export Citation Format

Share Document