scholarly journals Pemisahan Logam Tanah Jarang dari Limbah (Tailing) Emas Poboya dengan Metode Pengendapan

KOVALEN ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 9-17
Author(s):  
Arianto ◽  
Husain Sosidi ◽  
Prismawiryanti ◽  
Dwi Juli Pusptasari

Gold tailings are waste generated from gold mining activities and contain minerals and rare-earth metals (REM) that are much needed in current technological developments. This research was conducted to determine the REM content contained in Poboya gold tailings, through the destruction process using sulfuric acid and precipitation using ammonium hydroxide. The results were showed that the level of REM contained in Poboya gold tailings was 6-7%. REM oxide content analysis performed with Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy (SEM-EDS) obtained 6 types of REM with the main REM levels namely Terbium (Tb): 77-80% dan Lanthanum (La): 13%, as well as other rare-earth metals with smaller amounts of Europium (Eu): 4-5%, Cerium (Ce): 2%, Neodymium (Nd): 0.02% and Gadolinium (Gd): 0.02%. Poboya gold waste can be used by the community as a source of REM  and used in various industries. Keywords: Gold tailings, rare earth metals (REM), destruction, precipitation

1980 ◽  
Vol 17 (1) ◽  
pp. 211-213 ◽  
Author(s):  
Z. Y. Hua ◽  
J. Zhuge ◽  
C. S. Fan ◽  
H. X. Chen ◽  
X. L. Pan ◽  
...  

1979 ◽  
Vol 34 (8) ◽  
pp. 1057-1058 ◽  
Author(s):  
Axel Czybulka ◽  
Günter Steinberg ◽  
Hans-Uwe Schuster

In the systems Li-M-X = (M = Y, Gd; X = Si, Ge) the compounds LiYSi, LiYGe and LiGdGe were prepared. Their crystal structures were determined by X-ray investigations. They crystallize hexagonally (space group P 6̄2m), and a C22-(Fe2P-type) lattice was found


1974 ◽  
Vol 4 (6) ◽  
pp. 938-946 ◽  
Author(s):  
B D Padalia ◽  
S N Gupta ◽  
V P Vijayavargiya ◽  
B C Tripathi

EKSPLORIUM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 141
Author(s):  
Novita Sari Fatihah ◽  
Mutia Anggraini ◽  
Afiq Azfar Pratama ◽  
Kurnia Setiawan Widana

ABSTRAK. Monasit merupakan mineral hasil samping pengolahan timah yang mengandung fosfat, logam tanah jarang, dan unsur radioaktif berupa uranium dan torium. Unsur-unsur tersebut dapat dimanfaatkan secara optimal jika terpisah satu dengan yang lainnya melalui proses pengolahan. Pengolahan monasit meliputi proses dekomposisi, pelarutan parsial, dan pengendapan. Pemisahan unsur logam tanah jarang dari unsur radioaktif dalam monasit dilakukan melalui proses pelarutan parsial, akan tetapi pemisahan tersebut belum optimal sehingga diperlukan proses lebih lanjut untuk meningkatkan perolehan unsur-unsur tersebut. Pada penelitian ini, proses tersebut dilakukan melalui dua metode yaitu pelarutan total dengan asam klorida (HCl) yang bertujuan untuk melarutkan semua unsur dalam endapan dan pengendapan dengan ammonium hidroksida (NH4OH) yang bertujuan untuk memisahkan unsur radioaktif dan unsur logam tanah jarang. Kedua metode tersebut dilakukan pada kondisi optimum proses dengan berbagai variasi pH, suhu, dan waktu. Berdasarkan hasil pengamatan diperoleh bahwa kelarutan optimum masing-masing unsur sebesar 67,6% uranium, 15,3% torium, dan 50,8% LTJ pada kondisi proses pelarutan pH 1, pada suhu 80°C selama 2 jam. Sedangkan pada proses pengendapan diperoleh recovery pengendapan masing-masing unsur sebesar 57% uranium, 75,7% torium, 4,8% logam tanah jarang pada kondisi pH 6. Berdasarkan data tersebut disimpulkan bahwa uranium, torium, dan logam tanah jarang dapat larut pada kondisi proses pelarutan pH 1, suhu 80°C selama 2 jam, dan dapat dipisahkan pada kondisi pH pengendapan 6.ABSTRACT. Monazite is a by-product of tin processing containing phosphate, rare earth elements, and radioactive elements such as uranium and thorium. These elements can be utilized optimally if separated from one another through processing. Monazite processing includes decomposition, partial dissolution, and precipitation processes. The separation of rare earth elements from radioactive elements in monazite is carried out through a partial dissolution process, but the separation is not optimal so that further processes are needed to increase the recovery of these elements. In this study, the process was carried out using two methods, namely total dissolution with hydrochloric acid (HCl) which aims to dissolve all elements in the precipitate and precipitation with ammonium hydroxide (NH4OH) which aims to separate radioactive elements and rare earth elements. Both methods were carried out under optimum process conditions with various variations in pH, temperature, and time. Based on observations, it was found that the optimum solubility of each element was 67.6% uranium, 15.3% thorium and 50.8% LTJ under the dissolving process conditions of pH 1, at 80°C for 2 hours. While in the deposition process, the precipitation recovery of each element is 57% uranium, 75.7% thorium, 4.8% rare earth metals at pH 6 conditions. Based on these data, it can be concluded that uranium, thorium, and rare earth elements can be dissolved at pH 1, at 80°C for 2 hours, and can be separated at pH 6 precipitation conditions.


Sign in / Sign up

Export Citation Format

Share Document