scholarly journals Peningkatan Perolehan Uranium, Torium, dan Logam Tanah Jarang dalam Residu Pelarutan Parsial pada Pengolahan Monasit

EKSPLORIUM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 141
Author(s):  
Novita Sari Fatihah ◽  
Mutia Anggraini ◽  
Afiq Azfar Pratama ◽  
Kurnia Setiawan Widana

ABSTRAK. Monasit merupakan mineral hasil samping pengolahan timah yang mengandung fosfat, logam tanah jarang, dan unsur radioaktif berupa uranium dan torium. Unsur-unsur tersebut dapat dimanfaatkan secara optimal jika terpisah satu dengan yang lainnya melalui proses pengolahan. Pengolahan monasit meliputi proses dekomposisi, pelarutan parsial, dan pengendapan. Pemisahan unsur logam tanah jarang dari unsur radioaktif dalam monasit dilakukan melalui proses pelarutan parsial, akan tetapi pemisahan tersebut belum optimal sehingga diperlukan proses lebih lanjut untuk meningkatkan perolehan unsur-unsur tersebut. Pada penelitian ini, proses tersebut dilakukan melalui dua metode yaitu pelarutan total dengan asam klorida (HCl) yang bertujuan untuk melarutkan semua unsur dalam endapan dan pengendapan dengan ammonium hidroksida (NH4OH) yang bertujuan untuk memisahkan unsur radioaktif dan unsur logam tanah jarang. Kedua metode tersebut dilakukan pada kondisi optimum proses dengan berbagai variasi pH, suhu, dan waktu. Berdasarkan hasil pengamatan diperoleh bahwa kelarutan optimum masing-masing unsur sebesar 67,6% uranium, 15,3% torium, dan 50,8% LTJ pada kondisi proses pelarutan pH 1, pada suhu 80°C selama 2 jam. Sedangkan pada proses pengendapan diperoleh recovery pengendapan masing-masing unsur sebesar 57% uranium, 75,7% torium, 4,8% logam tanah jarang pada kondisi pH 6. Berdasarkan data tersebut disimpulkan bahwa uranium, torium, dan logam tanah jarang dapat larut pada kondisi proses pelarutan pH 1, suhu 80°C selama 2 jam, dan dapat dipisahkan pada kondisi pH pengendapan 6.ABSTRACT. Monazite is a by-product of tin processing containing phosphate, rare earth elements, and radioactive elements such as uranium and thorium. These elements can be utilized optimally if separated from one another through processing. Monazite processing includes decomposition, partial dissolution, and precipitation processes. The separation of rare earth elements from radioactive elements in monazite is carried out through a partial dissolution process, but the separation is not optimal so that further processes are needed to increase the recovery of these elements. In this study, the process was carried out using two methods, namely total dissolution with hydrochloric acid (HCl) which aims to dissolve all elements in the precipitate and precipitation with ammonium hydroxide (NH4OH) which aims to separate radioactive elements and rare earth elements. Both methods were carried out under optimum process conditions with various variations in pH, temperature, and time. Based on observations, it was found that the optimum solubility of each element was 67.6% uranium, 15.3% thorium and 50.8% LTJ under the dissolving process conditions of pH 1, at 80°C for 2 hours. While in the deposition process, the precipitation recovery of each element is 57% uranium, 75.7% thorium, 4.8% rare earth metals at pH 6 conditions. Based on these data, it can be concluded that uranium, thorium, and rare earth elements can be dissolved at pH 1, at 80°C for 2 hours, and can be separated at pH 6 precipitation conditions.

2019 ◽  
Vol 20 (1) ◽  
pp. 20-27
Author(s):  
Marianna Yu. Malkova ◽  
Aleksandr N. Zadiranov

In recent years, heavy industry has rapidly increased interest in rare earth metals (REE). At the same time, new tasks on completeness of extraction and quality (purity) of REE are set. Providing new requirements for the quality of rare-earth metals can be achieved by two modern methods of ore processing. The first method is traditional leaching, but with the use of modern ultrasonic reactors of a through passage type of domestic production. The second method is leaching with the use of expensive imported impregnated sorbents that require special disposal after the deposition process of the desired fraction of material. The disadvantage of ultrasonic devices for processing of rare-earth metals is that the assigned parameters of the working chamber (length and diameter) are calculated for a specific type of ore being processed. Therefore, ultrasonic reactors operating in the metallurgical industry cannot be used to process all types of REE ores. The aim of the work is to study the efficiency of processing concentrates of ores containing rare earth elements by leaching using a universal ultrasonic reactor suitable for processing various concentrates containing rare earth elements. In this work, alkaline ore processing is carried out in an ultrasonic reactor of a special design, which allows regulation of the dimensions of the reactor working space this makes it possible to configure the reactor for highly efficient ore processing at different initial concentrations of valuable components. As shown by the results of the experiments, the extraction of rareearth metals and other valuable components of the ore in the ultrasonic reactor of this design is not less than 98.3%.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 388
Author(s):  
Silvester Jürjo ◽  
Liis Siinor ◽  
Carolin Siimenson ◽  
Päärn Paiste ◽  
Enn Lust

Estonian phosphorite ore contains trace amounts of rare earth elements (REEs), many other d-metals, and some radioactive elements. Rare earth elements, Mo, V, etc. might be economically exploitable, while some radioactive and toxic elements should be removed before any other downstream processing for environmental and nutritional safety reasons. All untreated hazardous elements remain in landfilled waste in much higher concentration than they occur naturally. To resolve this problem U, Th, and Tl were removed from phosphorite ore at first using liquid extraction. In the next step, REE were isolated from raffinate. Nitrated Aliquat 336 (A336[NO3]) and Bis(2-ethylhexyl) Phosphate (D2EHPA) were used in liquid extraction for comparison. An improved method for exclusive separation of radioactive elements and REEs from phosphorite ore in 2-steps has been developed, exploiting liquid extraction at different pH values.


2018 ◽  
Vol 61 (6) ◽  
pp. 460-465
Author(s):  
G. G. Mikhailov ◽  
L. A. Makrovets ◽  
L. A. Smirnov

At the present time, rare-earth elements in metallurgy are used in  the form of mischmetal – a rare-earth elements natural mixture (with  atomic numbers from 57 to 71). It contains about 50  wt.  % of cerium.  The remaining elements are mainly lanthanum and niobium. The specific composition is determined by the ore deposit. Inconstant composition of the modifier containing rare-earth metals (REM) can significantly reduce its efficiency. Experimentally, for every branded steels  composition the ratio of various REMs can’t be selected because of the  high costs of obtaining technically pure rare-earth metals. The task of  determining the each rare earth element optimum concentrations and  complex ligature composition can be solved by thermodynamic modeling. In the framework of thermodynamic modeling, the interaction  between magnesium, aluminum and lanthanum with oxygen in liquid  iron is presented. And the thermodynamic model of steel deoxidation  by these active metals composition is considered. On the basis of available literature data on the phase diagrams of the systems MgO – Al2O3 ,  MgO – La2O3 and La2O3 – Al2O3 , the coordinates of the invariant equilibria points in the system MgO – La2O3 – Al2O3 were determined. The  phase diagram of the system MgO – La2O3 – Al2O3 was constructed. It  made possible to establish all phase equilibria realized in the process  of deoxidation of steel with magnesium, lanthanum and aluminum and  to describe these phase equilibria by chemical reactions equations. The  activity of the components in liquid oxide melts was determined using  the theory of subregular ionic solutions, which takes into account the  dependence of the coordination number of cations on the composition  of the oxide melt. The activity of components in metal melts conjugated with oxide systems were determined by Wagner’s theory using the  parameters of the first order interaction. Equilibrium constants values  for the steel deoxidation reactions are installed indirectly by thermodynamic calculations. On the basis of the obtained data the components  solubility surface in the metal melts of Fe – Mg – Al – La – O system  was constructed, which allowed to determine the liquid metal composition regions associated with the corresponding oxide phase.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Thi Kim Dung NHU ◽  
Van Luan PHAM ◽  
Thi Chinh VU ◽  
Van Duoc TRAN

Rare earth metals are used in electricity, electronics, nuclear, optics, space, metallurgy,superconducting and super magnetic materials, glass and ceramics, and agriculture. Some rare earthelements are added to fertilizers for crops and some trials for animal feed. Rare earth elements, exceptfor radioactive promethium, are relatively abundant in the earth's crust. Vietnam has a tremendous rareearth potential, distributed mainly in the Northwest, including Nam Xe, Dong Pao, Muong Hum, andYen Bai. There are many research projects on rare earth ores of different types globally, but the focus ismainly on the essential minerals, including monazite, xenotime, and bastnaesite. This report summarizesresearch data on rare earth ore intending to produce a general assessment of rare earth ore and itsbeneficiation technology in Vietnam.


2021 ◽  
Vol 03 (01) ◽  
pp. 79-88
Author(s):  
Davron Rakhmonovich Djuraev ◽  
◽  
Mokhigul Madiyorovna Jamilova ◽  

The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".


Author(s):  
A. Amangeldykyzy ◽  
◽  
A. N. Kopobayeva ◽  
N. S. Askarova ◽  
D.S. Ozhigin ◽  
...  

The work studies mineralogical and geochemical features of the Jurassic coals of the Shubarkol deposit. The samples were examined using the method of scanning electron microscopy (SEM-EDX) Hitachi S-3400N, which was carried out at the Uranium Geology Research and Development Center at the Department of Geoecology and Geochemistry of TPU. Coal geochemistry was studied by instrumental neutron activation analysis (INAA) at the nuclear geochemical laboratory of the Department of Geoecology and Geochemistry of National Research Tomsk Polytechnic University (TPU). The choice of this object of study was determined by the tasks of research including the study of the patterns of accumulation of abnormal concentrations of REE, the effect of various factors of the geological environment on the levels of their accumulation in coals, as well as the conditions of its concentration and forms of occurrence in coals to expand the mineral resource base of Kazakhstan for rare earth elements. According to the results of scanning microscopic analysis, aluminosilicates, sulfides and sulfates with inclusions of microparticles of rare and rare earth elements were found in the composition of the Shubarkol deposit coals. According to the INNA results, abnormal concentrations of Sc, Ta, Nb, Hf, Zr, Ba, Sr, Ce and REE were found. Weathering processes led mainly to the loss and redistribution of REE in the coal seams of the Shubarkol deposit, which in turn led to increasing the content of rare earth elements from the bottom up the section. As a result of the action of multiple processes, increased concentrations of rare earth metals, mainly of the yttrium group, were formed. The absence of negative europium anomaly was determined, which confirms the original rocks composition peculiarity. The maximum contents of rare-earth metals are confined to weathered coals; for the medium-heavy group (Nd, PM, Sm, Eu), they are almost a hundredfold higher than the clarke in the upper continental crust. The tenfold excess of the clarke for elements from Gd to Lu was found in clayey sandstones and siltstones; for the rest of the rocks of the deposit the excess over the clarke is significantly lower. It was found that the coals of the deposit belong to the H-type and L-type of REE distribution. During the formation of oxidized H-type coals, clayey matter of terrigenous ash predominated as a carrier of REE, while unoxidized L-type coals were formed with the introduction of REE into the coal accumulation basin mainly in the composition of clay minerals and LREE-phosphates. Here the main source of REE was apparently the weathering crust over acidic rocks.


Author(s):  
Jessie Samaniego ◽  
Cris Reven Gibaga ◽  
Alexandria Tanciongco ◽  
Rasty Rastrullo

An abandoned mercury mine area in Puerto Princesa City, which was previously operated by Palawan Quicksilver Mines, Inc. (PQMI) from 1953 to 1976, is known for its unrehabilitated open-pit of mercury-rich rocks and exposed mine waste calcine stockpiles in the vicinity. In order to establish an understanding on the geology of the abandoned mercury mine deposit and to obtain clues in determining the possible metal pollutants in the area, measurement of trace element concentrations of soil and sediments collected from the PQMI vicinity were conducted. Soil and sediment samples were analyzed for heavy metals, rare-earth elements and naturally occurring radioactive elements and determined its contamination factor as part of risk assessment. Analytical results showed that aside from mercury, several heavy metals (nickel, chromium, manganese) were found to be anomalous due to the geology of the area. Statistical analyses show that chromium, nickel and antimony present the highest contamination factor among the sampling groups. Mercury is found to have negative bias with higher rare earth elements concentration but positively correlated with arsenic, antimony, and thallium. In general, there is low concentration of rare earth elements (except for scandium) in comparison with its respective average crustal concentration. Due to the nature of geology in the area, naturally occurring radioactive elements influence is also minimal. The results of this study, especially on the assessment of soil and sediment pollutants, are recommended as guidance to its mine rehabilitation.


2020 ◽  
Vol 1009 ◽  
pp. 149-154
Author(s):  
Tanongsak Yingnakorn ◽  
Piamsak Laokhen ◽  
Loeslakkhana Sriklang ◽  
Tapany Patcharawit ◽  
Sakhob Khumkoa

High power neodymium magnets have been used extensively, such as components of hard disk drives, electric vehicles, and maglev trains. This type of magnet contains of high concentration of rare earth elements. After the device is out of service, the magnet will be removed and the rare earth element contained in the magnet will be extracted in order to reuse for any purposes. Recently, the study on extraction of rare earth elements (REE) from neodymium magnets is increased. However, there was only few research regarding to the extraction of rare earth metals by using a water leaching method. In this study, rare-earth elements were extracted from neodymium magnet scrap by using selective leaching technique. Initially, magnets were leached with 2 M of sulfuric acid for 24 hrs. Then, the leached solution was heated at 110°C in order to remove water and the green powder was remained. The green powder was further roasted in a muffle furnace at various temperatures from 750°C to 900°C for 2 hrs. and subsequently leached by water. Finally, the iron oxide residue was separated from rare earth element solution by filtration. Based on this experiment, it was found that the purity of the rare earth metals can be achieved up to 99.4%.


Sign in / Sign up

Export Citation Format

Share Document