scholarly journals A Common-Ground Review of the Potential for Machine Learning Approaches in Electrocardiographic Imaging Based on Probabilistic Graphical Models

Author(s):  
Jaume Coll-Font ◽  
Linwei Wang ◽  
Dana Brooks
Author(s):  
Shyamala G. Nadathur

Large datasets are regularly collected in biomedicine and healthcare (here referred to as the ‘health domain’). These datasets have some unique characteristics and problems. Therefore there is a need for methods which allow modelling in spite of the uniqueness of the datasets, capable of dealing with missing data, allow integrating data from various sources, explicitly indicate statistical dependence and independence and allow modelling with uncertainties. These requirements have given rise to an influx of new methods, especially from the fields of machine learning and probabilistic graphical models. In particular, Bayesian Networks (BNs), which are a type of graphical network model with directed links that offer a general and versatile approach to capturing and reasoning with uncertainty. In this chapter some background mathematics/statistics, description and relevant aspects of building the networks are given to better understand s and appreciate BN’s potential. There are also brief discussions of their applications, the unique value and the challenges of this modelling technique for the domain. As will be seen in this chapter, with the additional advantages the BNs can offer, it is not surprising that it is becoming an increasingly popular modelling tool in the health domain.


Author(s):  
Max A. Little

Statistical machine learning and statistical DSP are built on the foundations of probability theory and random variables. Different techniques encode different dependency structure between these variables. This structure leads to specific algorithms for inference and estimation. Many common dependency structures emerge naturally in this way, as a result, there are many common patterns of inference and estimation that suggest general algorithms for this purpose. So, it becomes important to formalize these algorithms; this is the purpose of this chapter. These general algorithms can often lead to substantial computational savings over more brute-force approaches, another benefit that comes from studying the structure of these models in the abstract.


2021 ◽  
pp. 165-275
Author(s):  
Kazuyuki Tanaka

AbstractWe review sublinear modeling in probabilistic graphical models by statistical mechanical informatics and statistical machine learning theory. Our statistical mechanical informatics schemes are based on advanced mean-field methods including loopy belief propagations. This chapter explores how phase transitions appear in loopy belief propagations for prior probabilistic graphical models. The frameworks are mainly explained for loopy belief propagations in the Ising model which is one of the elementary versions of probabilistic graphical models. We also expand the schemes to quantum statistical machine learning theory. Our framework can provide us with sublinear modeling based on the momentum space renormalization group methods.


2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


Sign in / Sign up

Export Citation Format

Share Document