scholarly journals Increasing root penetration into a different environment is more important than improving rooting depth

Author(s):  
Xue Gong ◽  
Julian Taylor ◽  
Glenn McDonald

Deep rooting is often thought as a promising phenotype for resource extraction, but on soils with constraints, desired rooting depth was rarely observed. We hypothesised that if the genetic effect on root growth and rooting depth were separated from other effects, the determinants of root growth and rooting depth could be quantified. The conventional core-breaking method was used to measure root growth of wheat at two sites in two successive years under rain fed conditions. The Bayesian hierarchical nonlinear mixed models (HNLMMs) were employed to estimate root distribution, heritability and rooting depth. We found that root penetration from the non-sodic top to the sodic subsoil was most critical in determining rooting depth. Our study indicates that focusing on root-soil interaction at the transition layer where soil constraints start to emerge would lead to a more effective solution to develop resilient roots. Our work not only serves as a guide for selecting genotypes in pot trials, but also provides a theoretical support to breed advance crops with better soil adaptation.

2001 ◽  
Vol 137 (3) ◽  
pp. 251-270 ◽  
Author(s):  
M. A. STALHAM ◽  
E. J. ALLEN

Experiments were conducted over the period 1987–94 at Cambridge University Farm and two other sites to examine the effect of various husbandry factors, particularly variety and irrigation regime, on rate, depth and density of rooting in potatoes. Maximum rooting depth ranged from 59 to 140 cm, indicating that potatoes can root to considerable depths and thereby have access to large volumes of water to satisfy the potential demand for water created by the atmospheric conditions and the size of the canopy. Root extension vertically through the soil profile was best described as a three-phase process: an initial rapid period lasting 3–5 weeks with growth rates c. 1·2 cm/day, a second period of slower growth (c. 0·8 cm/day), followed by cessation of root extension for the rest of the life of the crop. Variety had a major influence on the ultimate depth of rooting, primarily owing to variations in the length of the different periods of rooting rather than the rate in each period. It was observed that changes in the rate, or the cessation of root penetration were always preceded 4–9 days earlier by a change in the rate, or cessation, of leaf appearance. This feature should make it possible to characterize the duration of rooting of varieties through measurement of leaf emergence. Varieties which ceased leaf production early, such as Atlantic, were found to have a duration of root growth of c. 60 days, with Cara rooting for c. 30 days longer. Maximal total root length (TRL) and root length density (RLD) in the experiments reported were 16·9 km/m2 and 5·5 cm/cm3, respectively, similar to those found previously in potatoes and crops such as sugar beet, but considerably greater than many other vegetables. Rooting density decreased with depth, but the root systems were not as surface-oriented as many other studies have shown. When TRL was close to its maximum, the vertical distribution of RLD showed that between 40 and 73% was confined to the upper 30 cm, with irrigated crops possessing a greater proportion of their roots in the plough layer. Despite being planted in rows 70–91 cm apart, rooting systems were homogeneously distributed in a horizontal direction by c. 35 days after emergence, at which time the roots had reached a depth of c. 50 cm. Therefore, apart from a short period after emergence, the potato crop is capable of accessing considerable volumes of soil from which to extract water and nutrients. Ensuring that soil conditions are conducive to maximal rates of root growth should be the target for growers, since this will lead to a more efficient use of soil water and irrigation.


2015 ◽  
Vol 66 (2) ◽  
pp. 158 ◽  
Author(s):  
N. R. Hulugalle ◽  
K. J. Broughton ◽  
D. K. Y. Tan

Root penetration and proliferation are directly related to enhanced nutrient and water uptake, and thus to increased crop growth and yield. However, few studies have reported root growth and its seasonal variation in irrigated summer crops in fine-textured soils such as Vertosols. The objective of this study was to quantify the effects of tillage methods and the summer crops cotton (Gossypium hirsutum L.), maize (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench.) on root density in the non-sodic surface and subsurface soil (0–0.5 m) and sodic subsoil (0.6–0.9 m) of irrigated Vertosols in northern New South Wales (NSW). Root growth of cotton, maize and sorghum was evaluated using a combination of core sampling, and minirhizotrons and an image capture system, in several experiments conducted from 2004 to 2012, near Narrabri, northern NSW. The experimental sites had Vertosol soils with average clay contents of 65 g 100 g–1 in the surface 1 m, with sodic horizons present at depth. Rooting depth of cotton was relatively shallow, with most roots in the surface 0.6 m. Subsoil (0.6–0.9 m) root growth of cotton was sparse under continuous cotton but was greater with a cotton–wheat rotation. Among cotton genotypes, surface root length density of a Bollgard® cotton variety was less than that of its non-Bollgard counterpart. Subsoil root growth of sorghum and maize ranged from moderate to high, and accounted for a significant proportion of the total length of their root systems. This may be because maize and sorghum were able to tolerate the waterlogged conditions in the sodic subsoils of these Vertosols.


2010 ◽  
Vol 36 (4) ◽  
pp. 149-159
Author(s):  
Susan Day ◽  
P. Eric Wiseman ◽  
Sarah Dickinson ◽  
J. Roger Harris

Knowledge of the extent and distribution of tree root systems is essential for managing trees in the built environment. Despite recent advances in root detection tools, published research on tree root architecture in urban settings has been limited and only partially synthesized. Root growth patterns of urban trees may differ considerably from similar species in forested or agricultural environments. This paper reviews literature documenting tree root growth in urban settings as well as literature addressing root architecture in nonurban settings that may contribute to present understanding of tree roots in built environments. Although tree species may have the genetic potential for generating deep root systems (>2 m), rooting depth in urban situations is frequently restricted by impenetrable or inhospitable soil layers or by underground infrastructure. Lateral root extent is likewise subject to restriction by dense soils under hardscape or by absence of irrigation in dry areas. By combining results of numerous studies, the authors of this paper estimated the radius of an unrestricted root system initially increases at a rate of approximately 38 to 1, compared to trunk diameter; however, this ratio likely considerably declines as trees mature. Roots are often irregularly distributed around the tree and may be influenced by cardinal direction, terrain, tree lean, or obstacles in the built environment. Buttress roots, tap roots, and other root types are also discussed.


2010 ◽  
Vol 37 (5) ◽  
pp. 833-846
Author(s):  
Jan Serroyen ◽  
Geert Molenberghs ◽  
Marc Aerts ◽  
Ellen Vloeberghs ◽  
Peter Paul De Deyn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document