scholarly journals Unique Features of Different Classes of G-Protein-Coupled Receptors Revealed from Sequence Coevolutionary and Structural Analysis

Author(s):  
Hung Do ◽  
Allan Haldane ◽  
Ronald M. Levy ◽  
Yinglong Miao

G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and represent the primary targets of about one third of currently marketed drugs. Despite the critical importance, experimental structures have been determined for only a limited portion of GPCRs and functional mechanisms of GPCRs remain poorly understood. Here, we have constructed novel sequence coevolutionary models of the A and B classes of GPCRs and compared them with residue contact frequency maps generated with available experimental structures. Significant portions of structural residue contacts were successfully detected in the sequence-based covariational models. “Exception” residue contacts predicted from sequence coevolutionary models but not available structures added missing links that were important for GPCR activation and allosteric modulation. Moreover, we identified distinct residue contacts involving different sets of functional motifs for GPCR activation, such as the Na+ pocket, CWxP, DRY, PIF and NPxxY motifs in the class A and the HETx and PxxG motifs in the class B. Finally, we systematically uncovered critical residue contacts tuned by allosteric modulation in the two classes of GPCRs, including those from the activation motifs and particularly the extracellular and intracellular loops in class A GPCRs. These findings provide a promising framework for rational design of ligands to regulate GPCR activation and allosteric modulation.

2021 ◽  
Author(s):  
Hung Do ◽  
Allan Haldane ◽  
Ronald Levy ◽  
Yinglong Miao

G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and serve as the primary targets of about one third of currently marketed drugs. Despite the critical importance, experimental structures have been determined for only a limited portion of GPCRs. Functional mechanisms of GPCRs remain poorly understood. Here, we have constructed sequence coevolutionary models of the A, B and C classes of GPCRs and compared them with residue contact frequency maps generated with available experimental structures. Significant portions of structural residue contacts have been successfully detected in the sequence-based covariational models. "Exception" residue contacts predicted from sequence coevolutionary models but not available structures added missing links that were important for GPCR activation and allosteric modulation. Our combined coevolutionary and structural analysis revealed unique features of the different classes of GPCRs. First, we provided evidence from coevolutionary couplings that dimerization is required for activation of class C GPCRs, but not for activation of class A and B GPCRs. Second, we identified distinct residue contacts involving different sets of functional motifs for activation of the class A and B GPCRs. Finally, we uncovered critical residue contacts tuned by allosteric modulation in the three classes of GPCRs. These findings provide a promising framework for designing selective therapeutics of GPCRs.


2021 ◽  
Vol 22 (6) ◽  
pp. 3241
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Thi Ngoc Lan Vu ◽  
Sanghee Yoon ◽  
...  

G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein–protein interactions (PPI).


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138463 ◽  
Author(s):  
Adam L. Martin ◽  
Michael A. Steurer ◽  
Robert S. Aronstam

2013 ◽  
Vol 69 (11) ◽  
pp. 2287-2292 ◽  
Author(s):  
Andrew C. Kruse ◽  
Aashish Manglik ◽  
Brian K. Kobilka ◽  
William I. Weis

G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.


2021 ◽  
Author(s):  
David Gloriam ◽  
Alexander Hauser ◽  
Albert Kooistra ◽  
Christian Munk ◽  
M. Madan Babu

Abstract Two-thirds of human hormones and one-third of clinical drugs activate ~350 G protein-coupled receptors belonging to four classes: A, B1, C and F. Whereas a model of activation has been described for class A, very little is known about the activation of the other classes which differ by being activated by endogenous ligands bound mainly or entirely extracellularly. Here, we show that although they use the same structural scaffold and share several helix macroswitches, the GPCR classes differ in their microswitch residue positions and contacts. We present molecular mechanistic maps of activation for each GPCR class and new methods for contact analysis applicable for any functional determinants. This is the first superfamily residue-level rationale for conformational selection and allosteric communication by ligands and G proteins laying the foundation for receptor-function studies and drugs with the desired modality.


Sign in / Sign up

Export Citation Format

Share Document