scholarly journals Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone mediated inhibition of adventitious root formation in apple

Author(s):  
Xingqiang Fan ◽  
Hui Li ◽  
Yushuang Guo ◽  
Qi Qi ◽  
Xiangning Jiang ◽  
...  

Adventitious root (AR) formation is important for the vegetative propagation. The effects of strigolactones (SLs) on AR formation have been rarely reported, especially in woody plants. In this study, we first verified the inhibitory effects of SLs on AR formation in apple materials. Transcriptome analysis identified 12,051 differentially expressed genes over the course of AR formation, with functions related to organogenesis, cell wall biogenesis or plant senescence. WGCNA suggests SLs might inhibit AR formation through repressing the expression of two core hub genes, MdLAC3 and MdORE1. We further verified that enhanced cell wall formation and accelerated senescence were involved in the AR inhibition caused by SLs. Combining small RNA and degradome sequencing, as well as a dual-luciferase sensor system, we identified and validated three negatively correlated miRNA–mRNA pairs, including mdm-miR397–MdLAC3 involved in secondary cell wall formation, and mdm-miR164a/b–MdORE1 involved in senescence. Finally, we have experimentally demonstrated the role of mdm-miR164b–MdORE1 in SLs-mediated inhibition of AR formation. Overall, our findings not only propose a comprehensive regulatory network for the function of SLs on AR formation, but also provide novel candidate genes for the potential genetic improvement of AR formation in woody plants using transgenic or CRISPR technology.

2020 ◽  
Vol 50 (2) ◽  
pp. 176-186
Author(s):  
Yi MAN ◽  
RuiLi LI ◽  
YuFen BU ◽  
Na SUN ◽  
YanPing JING ◽  
...  

2011 ◽  
Vol 5 (S7) ◽  
Author(s):  
Steven Hussey ◽  
Eshchar Mizrachi ◽  
David Berger ◽  
Alexander Myburg

2002 ◽  
Vol 21 (4) ◽  
pp. 296-314 ◽  
Author(s):  
David R. Smart ◽  
Laszlo Kocsis ◽  
M. Andrew Walker ◽  
Christine Stockert

2021 ◽  
Vol 12 ◽  
Author(s):  
Dehui Qu ◽  
Xiaohui Zhao ◽  
Yao Sun ◽  
Fan-Lin Wu ◽  
Sheng-Ce Tao

Ser/Thr phosphorylation by serine/threonine protein kinases (STPKs) plays significant roles in molecular regulation, which allows Mycobacteria to adapt their cell wall structure in response to the environment changes. Identifying direct targets of STPKs and determining their activities are therefore critical to revealing their function in Mycobacteria, for example, in cell wall formation and virulence. Herein, we reported that RmlA, a crucial L-rhamnose biosynthesis enzyme, is a substrate of STPK PknB in Mycobacterium tuberculosis (M. tuberculosis). Mass spectrometry analysis revealed that RmlA is phosphorylated at Thr-12, Thr-54, Thr-197, and Thr-12 is located close to the catalytic triad of RmlA. Biochemical and phenotypic analysis of two RmlA mutants, T12A/T12D, showed that their activities were reduced, and cell wall formation was negatively affected. Moreover, virulence of RmlA T12D mutant was attenuated in a macrophage model. Overall, these results provide the first evidence for the role of PknB-dependent RmlA phosphorylation in regulating cell wall formation in Mycobacteria, with significant implications for pathogenicity.


1971 ◽  
Vol 17 (1) ◽  
pp. 33-43 ◽  
Author(s):  
D. Roy Davies ◽  
A. Plaskitt

SUMMARYFifteen mutant strains of Chlamydomonas reinhardi were isolated which showed defects in some aspect of the process of cell-wall formation. Genetic analyses indicated that most of the mutations were due to single gene changes; two were anomalous in that non-Mendelian segregations were obtained on crossing with other genotypes, and on selfing they frequently gave rise to wild-type phenotypes.Occasional somatic revertants were also obtained from these two strains. On the basis of these analyses it is suggested that there are two levels of control operating in the process of cell wall biogenesis - one concerned with subunit production at the nuclear level and another, possibly concerned with three-dimensional organization, at another level. Electron-microscope analyses of the different mutants showed the mutants to be divided into three main categories: those in which the wall was formed but was not attached to the plasma membrane, those in which the wall was attached to the membrane, and those in which very little wall was formed. In the last class in particular, vesicles containing wall precursors were clearly visible, and were shed through the plasma membrane into the medium.


Sign in / Sign up

Export Citation Format

Share Document