scholarly journals Stochastic Jumping Robots for Large-scale Environmental Sensing

Author(s):  
Julian Hird ◽  
Andrew Conn ◽  
Sabine Hauert

Single-use jumping robots that are mass-producible and biodegradable could be quickly released for environmental sensing applications. Such robots would be pre-loaded to perform a set number of jumps, in random directions and with random distances, removing the need for onboard energy and computation. Stochastic jumpers build on embodied randomness and large-scale deployments to perform useful work. This paper introduces simulation results showing how to construct a large group of stochastic jumpers to perform environmental sensing, and the first demonstration of robot prototypes that can perform a set number of sequential jumps, have full-body sensing, and are well suited to be made biodegradable. Corresponding author(s) Email: [email protected]@bristol.ac.uk


Author(s):  
Julian Hird ◽  
Andrew Conn ◽  
Sabine Hauert

Single-use jumping robots that are mass-producible and potentially biodegradable could be quickly released for environmental sensing applications. Such robots would be pre-loaded to perform a set number of jumps, at random directions and distances, removing the need for onboard energy and computation. Stochastic swarms build on embodied randomness and large-scale deployments to perform useful work. This paper introduces simulation results showing how to construct a stochastic swarm of jumpers to perform environmental sensing, and the first demonstration of robot prototypes which can perform a set number of sequential jumps, full-body sensing, and have the potential to be biodegradable. Corresponding author(s) Email: [email protected]@bristol.ac.uk



Author(s):  
L. Burratti ◽  
M. Casalboni ◽  
F. De Matteis ◽  
F. Mochi ◽  
R. Francini ◽  
...  


2021 ◽  
Vol 11 (8) ◽  
pp. 3623
Author(s):  
Omar Said ◽  
Amr Tolba

Employment of the Internet of Things (IoT) technology in the healthcare field can contribute to recruiting heterogeneous medical devices and creating smart cooperation between them. This cooperation leads to an increase in the efficiency of the entire medical system, thus accelerating the diagnosis and curing of patients, in general, and rescuing critical cases in particular. In this paper, a large-scale IoT-enabled healthcare architecture is proposed. To achieve a wide range of communication between healthcare devices, not only are Internet coverage tools utilized but also satellites and high-altitude platforms (HAPs). In addition, the clustering idea is applied in the proposed architecture to facilitate its management. Moreover, healthcare data are prioritized into several levels of importance. Finally, NS3 is used to measure the performance of the proposed IoT-enabled healthcare architecture. The performance metrics are delay, energy consumption, packet loss, coverage tool usage, throughput, percentage of served users, and percentage of each exchanged data type. The simulation results demonstrate that the proposed IoT-enabled healthcare architecture outperforms the traditional healthcare architecture.



2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.



Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 196-207
Author(s):  
Shoichi Sato ◽  
Yasuhiro Noro

Abstract The introduction of large-scale renewable energy requires a control system that can operate multiple distributed inverters in a stable way. This study proposes an inverter control method that uses information corresponding to the inertia of the synchronous generator to coordinate the operation of battery energy storage systems. Simulation results for a system with multiple inverters applying the control method are presented. Various faults such as line-to-line short circuits and three-phase line-to-ground faults were simulated. Two fault points with different characteristics were compared. The voltage, frequency and active power quickly returned to their steady-state values after the fault was eliminated. From the obtained simulation results, it was verified that our control method can be operated stably against various faults.



2021 ◽  
Author(s):  
Rohit Chhiber ◽  
Arcadi Usmanov ◽  
William Matthaeus ◽  
Melvyn Goldstein ◽  
Riddhi Bandyopadhyay

<div>Simulation results from a global <span>magnetohydrodynamic</span> model of the solar corona and the solar wind are compared with Parker Solar <span>Probe's</span> (<span>PSP</span>) observations during its first several orbits. The fully three-dimensional model (<span>Usmanov</span> <span>et</span> <span>al</span>., 2018, <span>ApJ</span>, 865, 25) is based on Reynolds-averaged mean-flow equations coupled with turbulence transport equations. The model accounts for effects of electron heat conduction, Coulomb collisions, Reynolds stresses, and heating of protons and electrons via nonlinear turbulent cascade. Turbulence transport equations for turbulence energy, cross <span>helicity</span>, and correlation length are solved concurrently with the mean-flow equations. We specify boundary conditions at the coronal base using solar synoptic <span>magnetograms</span> and calculate plasma, magnetic field, and turbulence parameters along the <span>PSP</span> trajectory. We also accumulate data from all orbits considered, to obtain the trends observed as a function of heliocentric distance. Comparison of simulation results with <span>PSP</span> data show general agreement. Finally, we generate synthetic fluctuations constrained by the local rms turbulence amplitude given by the model, and compare properties of this synthetic turbulence with PSP observations.</div>



2013 ◽  
Vol 1530 ◽  
Author(s):  
A. Bendavid ◽  
L. Wieczorek ◽  
R. Chai ◽  
J. S. Cooper ◽  
B. Raguse

ABSTRACTA large area nanogap electrode fabrication method combinig conventional lithography patterning with the of focused ion beam (FIB) is presented. Lithography and a lift-off process were used to pattern 50 nm thick platinum pads having an area of 300 μm × 300 μm. A range of 30-300 nm wide nanogaps (length from 300 μm to 10 mm ) were then etched using an FIB of Ga+ at an acceleration voltage of 30 kV at various beam currents. An investigation of Ga+ beam current ranging between 1-50 pA was undertaken to optimise the process for the current fabrication method. In this study, we used Monte Carlo simulation to calculate the damage depth in various materials by the Ga+. Calculation of the recoil cascades of the substrate atoms are also presented. The nanogap electrodes fabricated in this study were found to have empty gap resistances exceeding several hundred MΩ. A comparison of the gap length versus electrical resistance on glass substrates is presented. The results thus outline some important issues in low-conductance measurements. The proposed nanogap fabrication method can be extended to various sensor applications, such as chemical sensing, that employ the nanogap platform. This method may be used as a prototype technique for large-scale fabrication due to its simple, fast and reliable features.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew Joseph ◽  
Aaron Roth ◽  
Jonathan Ullman ◽  
Bo Waggoner

There are now several large scale deployments of differential privacy used to collect statistical information about users. However, these deployments periodically recollect the data and recompute the statistics using algorithms designed for a single use. As a result, these systems do not provide meaningful privacy guarantees over long time scales. Moreover, existing techniques to mitigate this effect do not apply in the “local model” of differential privacy that these systems use. In this paper, we introduce a new technique for local differential privacy that makes it possible to maintain up-to-date statistics over time, with privacy guarantees that degrade only in the number of changes in the underlying distribution rather than the number of collection periods. We use our technique for tracking a changing statistic in the setting where users are partitioned into an unknown collection of groups, and at every time period each user draws a single bit from a common (but changing) group-specific distribution. We also provide an application to frequency and heavy-hitter estimation.



2017 ◽  
Author(s):  
Cherry May R. Mateo ◽  
Dai Yamazaki ◽  
Hyungjun Kim ◽  
Adisorn Champathong ◽  
Jai Vaze ◽  
...  

Abstract. Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe Efficiency coefficient decreased by more than 35 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions in finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings are universal and can be extended to global-scale simulations. These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.



Sign in / Sign up

Export Citation Format

Share Document