Total Ozone Trends in the Southern Hemisphere - An Update

2018 ◽  
Vol 11 (2) ◽  
Author(s):  
R. P. Kane

Para solicitação de resumo, entrar em contato com editor-chefe ([email protected]). 

1986 ◽  
Vol 13 (12) ◽  
pp. 1206-1209 ◽  
Author(s):  
Paul A. Newman ◽  
Mark R. Schoeberl
Keyword(s):  

1995 ◽  
Vol 100 (D12) ◽  
pp. 25867 ◽  
Author(s):  
Rumen D. Bojkov ◽  
Lane Bishop ◽  
Vitali E. Fioletov
Keyword(s):  

2006 ◽  
Vol 6 (12) ◽  
pp. 5163-5171 ◽  
Author(s):  
K. Vanicek

Abstract. This paper presents key results achieved by an analysis of the relation between high-quality simultaneous Dobson, Brewer ground and TOMS-V8, GOME-WFDOAS satellite total ozone observations for Hradec Kralove, Czech Republic. Statistically significant seasonal differences with maxima up to 4% of monthly averages have been found between Dobson and Brewer measurements during the winter/spring months. These differences can influence estimations of ozone trends if combined data series are used after replacing a Dobson instrument by a Brewer spectrophotometer. The differences can be attributed mostly to the influence of temperature on ozone absorption coefficients and to total sulphur dioxide. Similar seasonal differences exist between Dobson, GOME and Brewer, TOMS data sets at Hradec Kralove while Dobson versus TOMS and Brewer versus GOME observations fit well with each other within the instrumental accuracy of spectrophotometers. The above findings are supposed to be relevant to other mid and high latitude stations and they have been confirmed by several independent analyses. The conclusions should be considered by data users because the differences between particular ground and satellite data sets can influence validation of satellite ozone observing systems and analyses of recovery of the ozone layer in mid and high latitudes, among others.


1982 ◽  
Vol 120 (1) ◽  
pp. 29-53
Author(s):  
Christos S. Zerefos ◽  
Christos C. Repapis ◽  
Roy L. Jenne
Keyword(s):  

2000 ◽  
Vol 105 (D15) ◽  
pp. 19823-19828 ◽  
Author(s):  
Y. Sahai ◽  
V. W. J. H. Kirchhoff ◽  
N. M. Paes Lerne ◽  
C. Casiccia
Keyword(s):  

2018 ◽  
Vol 18 (3) ◽  
pp. 2097-2117 ◽  
Author(s):  
Mark Weber ◽  
Melanie Coldewey-Egbers ◽  
Vitali E. Fioletov ◽  
Stacey M. Frith ◽  
Jeannette D. Wild ◽  
...  

Abstract. We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995–present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013–2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (∼ 1996 globally and ∼ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade−1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade−1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.


2006 ◽  
Vol 6 (4) ◽  
pp. 5839-5865 ◽  
Author(s):  
K. Vanicek

Abstract. This paper presents key results achieved on analysis of relation between high-quality simultaneous Dobson, Brewer ground and TOMS-V8, GOME-WFDOAS satellite total ozone observations for Hradec Kralove, Czech Republic. Statistically significant seasonal differences with maxima up to 4% of monthly averages have been found between Dobson and Brewer measurements in winter/spring months. These differences can influence estimation of ozone trends if combined data series are used after replacement of the Dobson instrument by the Brewer spectrophotometer. The differences are mostly attributed to the influence of ozone effective temperature on ozone absorption coefficients and to total sulphur dioxide. Similar seasonal differences exist between Dobson, GOME and Brewer, TOMS data sets at Hradec Kralove while Dobson versus TOMS and Brewer versus GOME observations fit well with each other within the instrumental accuracy of spectrophotometers. The above findings are supposed to be relevant to other mid and high latitude stations and they have been confirmed by several independent analyses. The conclusions should be considered by data users because the differences between particular ground and satellite data sets can influence validation of satellite ozone observing systems and analyses of recovery of the ozone layer in mid and high latitudes, among others.


Author(s):  
Thumeka Mkololo ◽  
Nkanyiso Mbatha ◽  
Sivakumar Venkataraman ◽  
Nelson Begue ◽  
Gerrie Coetzee ◽  
...  

This study aims to investigate the Stratosphere-Troposphere Exchange (STE) events and ozone trends over Irene (25.5°S, 28.1°E). Twelve years of ozonesondes data (2000–2007, 2012–2015) from Irene station operating in the framework of the Southern Hemisphere Additional Ozonesodes (SHADOZ) was used to study the troposphere (0–16 km) and stratosphere (17– 28 km) ozone (O3) vertical profiles. Ozone profiles were grouped into three categories (2000–2003, 2004–2007 and 2012–2015) and average composites were calculated for each category. Fifteen O3 enhancement events were identified over the study period. These events were observed in all seasons (one event in summer, four events in autumn, five events in winter and five events in spring), however, they predominantly occur in winter and spring. The STE events presented here are observed to be influenced by the Southern Hemisphere polar vortex. During the STE events, the advected potential vorticity maps assimilated using Modélisation Isentrope du transport Méso–échelle de l’Ozone Stratosphérique par Advection (MIMOSA) model for the 350 K (~12–13 km) isentropic level indicated a transport of high latitude air masses which seems to be responsible for the reduction of the O3 mole fractions at the lower stratosphere over Irene which takes place at the same time with the enhancement of ozone in the upper troposphere. In general, the stratosphere is dominated by higher Modern Retrospective Analysis for Research Application (MERRA-2) potential vorticity (PV) values compared to the troposphere. However, during the STE events, higher PV values from the stratosphere were observed to intrude the troposphere. Ozone decline was observed from 12 km to 24 km with highest decline occurring from 14 km to 18 km. An average decrease of 6.0 and 9.1% was calculated from 12 to 24 km in 2004–2007 and 2012–2015 respectively. The observed decline occurred in the upper troposphere and lower stratosphere with winter and spring showing more decline compared with summer and autumn.


2006 ◽  
Vol 6 (10) ◽  
pp. 2837-2845 ◽  
Author(s):  
S. B. Andersen ◽  
B. M. Knudsen

Abstract. Reverse domain-filling trajectory calculations have been performed for the years 1993, 1995, 1996, 1997, and 2000 to calculate the spreading of ozone depleted air from the polar vortex to midlatitudes in spring. We find that for these years with massive Arctic ozone depletion the zonal mean total ozone column at midlatitudes is reduced with between 7 and 12 DU in the April-May period. The polar vortex and remnants have preferred locations which leads to longitudinal differences in the midlatitude ozone trends. Together with decadal variations in circulation the dilution of ozone depleted air may explain the major fraction of longitudinal differences in midlatitude ozone trends. For the period 1979–1997 the dilution may explain 50% of the longitudinal differences in ozone trends and for the period 1979–2002 it may explain 45%. The dilution also has a significant impact on the zonal mean ozone trends in the April-May period. Although uncertainties are large due to uncertainties in the ozone depletion values and neglect of ozone depletion in other years than 1993, 1995, 1996, 1997, and 2000 we have tried to calculate the size of this effect. We estimate that dilution may explain 29% of the trend in the period 1979–1997 and 33% of the trend in the period 1979–2002 as a lower limit.


Sign in / Sign up

Export Citation Format

Share Document