scholarly journals Biological protection of conifers against Heterobasidion infection – interaction between root-rot fungus and Phlebiopsis igantea

2017 ◽  
Author(s):  
Kristīne Kenigsvalde ◽  
◽  
Indulis Brauners ◽  
Astra Zaļuma ◽  
Jurģis Jansons ◽  
...  
2019 ◽  
Author(s):  
Katarzyna Gleń-Karolczyk ◽  

Horseradish roots, due to the content of many valuable nutrients and substances with healing and pro-health properties, are used more and more in medicine, food industry and cosmetics. In Poland, the cultivation of horseradish is considered minor crops. In addition, its limited size causes horseradish producers to encounter a number of unresolved agrotechnical problems. Infectious diseases developing on the leaves and roots during the long growing season reduce the size and quality of root crops. The small range of protection products intended for use in the cultivation of horseradish generates further serious environmental problems (immunization of pathogens, low effectiveness, deterioration of the quality of raw materials intended for industry, destruction of beneficial organisms and biodiversity). In order to meet the problems encountered by horseradish producers and taking into account the lack of data on: yielding, occurrence of infectious diseases and the possibility of combating them with methods alternative to chemical ones in the years 2012–2015, rigorous experiments have been carried out. The paper compares the impact of chemical protection and its reduced variants with biological protection on: total yield of horseradish roots and its structure. The intensification of infectious diseases on horseradish leaves and roots was analyzed extensively. Correlations were examined between individual disease entities and total yield and separated root fractions. A very important and innovative part of the work was to learn about the microbial communities involved in the epidemiology of Verticillium wilt of horseradish roots. The effect was examined of treatment of horseradish cuttings with a biological preparation (Pythium oligandrum), a chemical preparation (thiophanate-methyl), and the Kelpak SL biostimulator (auxins and cytokinins from the Ecklonia maxima algae) on the quantitative and qualitative changes occurring in the communities of these microorganisms. The affiliation of species to groups of frequencies was arranged hierarchically, and the biodiversity of these communities was expressed by the following indicators: Simpson index, Shannon–Wiener index, Shannon evenness index and species richness index. Correlations were assessed between the number of communities, indicators of their biodiversity and intensification of Verticillium wilt of horseradish roots. It was shown that the total yield of horseradish roots was on average 126 dt · ha–1. Within its structure, the main root was 56%, whereas the fraction of lateral roots (cuttings) with a length of more than 20 cm accounted for 26%, and those shorter than 20 cm for 12%, with unprofitable yield (waste) of 6%. In the years with higher humidity, the total root yield was higher than in the dry seasons by around 51 dt · ha–1 on average. On the other hand, the applied protection treatments significantly increased the total yield of horseradish roots from 4,6 to 45,3 dt · ha–1 and the share of fractions of more than 30 cm therein. Higher yielding effects were obtained in variants with a reduced amount of foliar application of fungicides at the expense of introducing biopreparations and biostimulators (R1, R2, R3) and in chemical protection (Ch) than in biological protection (B1, B2) and with the limitation of treatments only to the treatment of cuttings. The largest increments can be expected after treating the seedlings with Topsin M 500 SC and spraying the leaves: 1 × Amistar Opti 480 SC, 1 × Polyversum WP, 1 × Timorex Gold 24 EC and three times with biostimulators (2 × Kelpak SL + 1 × Tytanit). In the perspective of the increasing water deficit, among the biological protection methods, the (B2) variant with the treatment of seedlings with auxins and cytokinins contained in the E. maxima algae extract is more recommended than (B1) involving the use of P. oligandrum spores. White rust was the biggest threat on horseradish plantations, whereas the following occurred to a lesser extent: Phoma leaf spot, Cylindrosporium disease, Alternaria black spot and Verticillium wilt. In turn, on the surface of the roots it was dry root rot and inside – Verticillium wilt of horseradish roots. The best health of the leaves and roots was ensured by full chemical protection (cuttings treatment + 6 foliar applications). A similar effect of protection against Albugo candida and Pyrenopeziza brassicae was achieved in the case of reduced chemical protection to one foliar treatment with synthetic fungicide, two treatments with biological preparations (Polyversum WP and Timorex Gold 24 EC) and three treatments with biostimulators (2 × Kelpak SL, 1 × Tytanit). On the other hand, the level of limitation of root diseases comparable with chemical protection was ensured by its reduced variants R3 and R2, and in the case of dry root rot, also both variants of biological protection. In the dry years, over 60% of the roots showed symptoms of Verticillium wilt, and its main culprits are Verticillium dahliae (37.4%), Globisporangium irregulare (7.2%), Ilyonectria destructans (7.0%), Fusarium acuminatum (6.7%), Rhizoctonia solani (6.0%), Epicoccum nigrum (5.4%), Alternaria brassicae (5.17%). The Kelpak SL biostimulator and the Polyversum WP biological preparation contributed to the increased biodiversity of microbial communities associated with Verticillium wilt of horseradish roots. In turn, along with its increase, the intensification of the disease symptoms decreased. There was a significant correlation between the richness of species in the communities of microbial isolates and the intensification of Verticillium wilt of horseradish roots. Each additional species of microorganism contributed to the reduction of disease intensification by 1,19%.


2020 ◽  
Vol 21 ◽  
pp. 00034
Author(s):  
Alfia Razina ◽  
Olga Dyatlova

We present the results of the trial of the biological drug BisolbiSan (Bacillus subtillis strain H-13, isolated by the All-Russian Research Institute of Agricultural Microbiology) for treatment of spring wheat seeds in comparison with the widely popular chemical fungicides Maxim and Maxim Plus in the forest-steppe zone of Eastern Siberia in 2016–2018. BisolbiSan contributed to a decrease in total seed contamination by 2.4 times compared to control, which was practically at the level of the chemical fungicide Maxim. Maxim and Maxim Plus oppressed the growth of the sprout and the main germ line, while BisolbiSan stimulated the growth and development of the root system, and did not inhibit the growth of the sprout. The prevalence of root rot in the variant with BisolbiSan was lower compared to control by 54 %, effectiveness of which was not significantly inferior to that of chemical protectants. In comparison with control variant, BisolbiSan increased vitreous content of grain by 16.9 %, the content of crude gluten by 3.9 %, contributed to obtaining a statistically reliable increase in the yield of 0.38 tons per hectare, which did not differ significantly from the increase in the variant with chemical protectants. In our experiment, the payback of 1 ruble of costs when treating seeds with BisolbiSan was 1.7, which is 0.5 and 0.2 rubles higher compared to Maxim and Maxim Plus, respectively. The profitability of the yield increase using BisolbiSan was 70.9 %, which is 54.5 % and 20.6 % more than when using Maxim and Maxim Plus, respectively.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Naseri ◽  
M. Gheitury ◽  
M. Veisi

SummaryUnderstanding pathogen-agrosystem interaction is particularly essential when applying a control method to minimize pathogen prevalence prior to plant infection. To meet this requirement, frequency of major root rot pathogens isolated from bean root and seed, and their soil populations were examined in farmers’ fields. Multivariate analyses evidenced more frequent isolations of Fusarium solani and Rhizoctonia solani from root and seed compared to Macrophomina phaseolina and Fusarium oxysporum. Two Fusarium species had denser soil populations than R. solani and M. phaseolina. More frequent isolations of pathogens were detected in root and seed collected from Abhar and Khodabandeh compared to Kheirabad region. Agronomic and soil variables corresponded less closely to root infections compared to soil infestation and seed infections. Bean market class, herbicide application, and planting depth were linked to root, seed and soil infestations. Such information provides a basis for increased confidence in choosing appropriate control strategies for a pathogen and region in sustainable agriculture.


2004 ◽  
Vol 73 (5) ◽  
pp. 429-434 ◽  
Author(s):  
Nobuaki Tsuchiya ◽  
Kiyoshi Yoshida ◽  
Tomita Usui ◽  
Motohisa Tsukada
Keyword(s):  
Root Rot ◽  

Author(s):  
G.A. Polovinkin ◽  
◽  
I.L. Tychinskaya

As a result of the studies carried out, a complex of diseases on soybeans was identified: ascochitis, peronoscrosis and root rot. The studies carried out indicate a wide spread of diseases in the studied culture and the need to develop a set of protective measures to combat them. The greatest biological effectiveness was selected in the variant when using a complex of fungicides Redigo Pro + Prozaro, which averaged 93.7% for diseases.


2018 ◽  
Vol 51 (2) ◽  
Author(s):  
Tanveer Hussain ◽  
Tony Adesemoye ◽  
Muhammad Ishtiaq ◽  
Mewash Maqbool ◽  
Azhar Azam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document