scholarly journals Virulence of Pyrenophora tritici-repentis: a minireview

2021 ◽  
Author(s):  
Janis Kaneps ◽  
◽  
Biruta Bankina ◽  
Inga Moročko-Bičevska ◽  

Pyrenophora tritici-repentis is a major wheat pathogen in all wheat (Triticum spp.) growing areas worldwide. Up to date, eight P. tritici-repentis races have been described based on chlorosis, necrosis, or both symptoms caused on race differential wheat genotypes: ‘Glenlea’, 6B662, 6B365, and ‘Salamouni’. Symptom development on differential genotypes depends on the interaction of the pathogen’s necrotrophic effectors named Ptr ToxA, Ptr ToxB, and Ptr ToxC with host susceptibility genes. Ptr ToxA is encoded by the single copy gene ToxA and induces necrosis on sensitive wheat cultivars. Ptr ToxB causes chlorosis and is encoded by the multicopy gene ToxB. The Ptr ToxC is the non-proteinaceous, polar, low molecular mass molecule that also induces chlorosis, but up to date, the gene encoding this toxin is unknown. Races producing Ptr ToxA are predominant in the global Ptr population. There are several reports about new putative races of P. tritici-repentis that do not conform with the current race system, so further research is required. This study aims to collect and systematise available information about the virulence and races of P. tritici-repentis.

1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

2010 ◽  
Vol 187 (4) ◽  
pp. 911-919 ◽  
Author(s):  
Lynda M. Ciuffetti ◽  
Viola A. Manning ◽  
Iovanna Pandelova ◽  
Melania Figueroa Betts ◽  
J. Patrick Martinez

1990 ◽  
Vol 10 (10) ◽  
pp. 5548-5552 ◽  
Author(s):  
C Reich ◽  
J A Wise

U6 is the most conserved of the five small nuclear RNAs known to participate in pre-mRNA splicing. In the fission yeast Schizosaccharomyces pombe, the single-copy gene encoding this RNA is itself interrupted by an intron (T. Tani and Y. Ohshima, Nature (London) 337:87-90, 1989). Here we report analysis of the U6 genes from all four Schizosaccharomyces species, revealing that each is interrupted at an identical position by a homologous intron; in other groups, including ascomycete and basidiomycete fungi, as well as more distantly related organisms, the U6 gene is colinear with the RNA. The most parsimonious interpretation of our data is that the ancestral U6 gene did not contain an intron, but rather, it was acquired via a single relatively recent insertional event.


2003 ◽  
Vol 71 (1) ◽  
pp. 571-574 ◽  
Author(s):  
Geetha Kutty ◽  
Joseph A. Kovacs

ABSTRACT We have cloned and characterized the kex1 gene of Pneumocystis jiroveci. Unlike the case for Pneumocystis carinii, in which the homologous PRT-1 genes are multicopy, kex1 is a single-copy gene encoding a protein homologous to fungal serine endoproteases, which localize to the Golgi apparatus. Thus, substantial biological differences can be seen among Pneumocystis species.


Gene ◽  
1995 ◽  
Vol 154 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Loren J. Hauser ◽  
Madhu S. Dhar ◽  
Donald E. Olins

1989 ◽  
Vol 1 (7) ◽  
pp. 681-690 ◽  
Author(s):  
R C Elliott ◽  
T J Pedersen ◽  
B Fristensky ◽  
M J White ◽  
L F Dickey ◽  
...  

Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 197-205 ◽  
Author(s):  
Alan B Rose ◽  
Jiayang Li ◽  
Robert L Last

Nine blue fluorescent mutants of the flowering plant Arabidopsis thaliana were isolated by genetic selections and fluorescence screens. Each was shown to contain a recessive allele of trp1, a previously described locus that encodes the tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase (PAT, called trpD in bacteria). The trp1 mutants consist of two groups, tryptophan auxotrophs and prototrophs, that differ significantly in growth rate, morphology, and fertility. The trp1 alleles cause plants to accumulate varying amounts of blue fluorescent anthranilate compounds, and only the two least severely affected of the prototrophs have any detectable PAT enzyme activity. All four of the trp1 mutations that were sequenced are G to A or C to T transitions that cause an amino acid change, but in only three of these is the affected residue phylogenetically conserved. There is an unusually high degree of sequence divergence in the single-copy gene encoding PAT from the wild-type Columbia and Landsberg erecta ecotypes of Arabidopsis.


2005 ◽  
Vol 95 (2) ◽  
pp. 144-152 ◽  
Author(s):  
Lakhdar Lamari ◽  
Brent D. McCallum ◽  
Ron M. dePauw

Pyrenophora tritici-repentis causes necrosis and chlorosis in its wheat host. Susceptibility to races 2 (necrosis) and 5 (chlorosis) of the pathogen is known to be mediated by Ptr ToxA and Ptr ToxB, respectively. Sensitivity to each toxin is controlled by a single dominant and independently inherited gene. We used sensitivity to Ptr ToxA and Ptr ToxB as two genetic markers to investigate the origin and the state of tan spot susceptibility in Canadian Western Red Spring (CWRS) wheat over a period of more than a century. Sensitivity to Ptr ToxA, the toxin produced by nearly all isolates of the pathogen collected in the past 20 years in western Canada, appears to have been present in the first major cultivar, Red Fife, grown massively in the late 1800s. Sensitivity then was transmitted unknowingly into Canadian wheat lines through extensive use of backcrossing to maintain the Marquis-Thatcher breadmaking quality. Sensitivity to Ptr ToxA, which nearly disappeared from cultivars grown in western Canada in the 1950s, was reintroduced in the 1960s and unintentionally bred into many of the present-day cultivars. Sensitivity to Ptr ToxB, a toxin rarely found in isolates from western Canada, appeared with the release of Thatcher in 1934 and was transferred to many cultivars through backcross programs. In spite of large areas planted to Ptr ToxAand Ptr ToxB-sensitive cultivars over decades, tan spot epidemics remained sporadic until the 1970s. The results of this study raise the problem of the narrowing genetic base of CWRS wheat lines and the potential for unanticipated threats from plant pathogens. The intercrossing of genetically diverse material in one Canadian wheat breeding program resulted in the release of several modern cultivars with resistance to tan spot. The absence of wild-type Ptr ToxB-producing isolates in western Canada remains unexplained, given that sensitivity to Ptr ToxB was present continuously in western Canadian cultivars grown on vast areas for more than 70 years.


Sign in / Sign up

Export Citation Format

Share Document