scholarly journals Hypergraph domination and strong independence

2009 ◽  
Vol 3 (2) ◽  
pp. 347-358 ◽  
Author(s):  
Bibin Jose ◽  
Zsolt Tuza

We solve several conjectures and open problems from a recent paper by Acharya [2]. Some of our results are relatives of the Nordhaus-Gaddum theorem, concerning the sum of domination parameters in hypergraphs and their complements. (A dominating set in H is a vertex set D X such that, for every vertex x? X\D there exists an edge E ? E with x ? E and E?D ??.) As an example, it is shown that the tight bound ??(H)+??(H) ? n+2 holds in hypergraphs H = (X, E) of order n ? 6, where H is defined as H = (X, E) with E = {X\E | E ? E}, and ?? is the minimum total cardinality of two disjoint dominating sets. We also present some simple constructions of balanced hypergraphs, disproving conjectures of the aforementioned paper concerning strongly independent sets. (Hypergraph H is balanced if every odd cycle in H has an edge containing three vertices of the cycle; and a set S X is strongly independent if |S?E|? 1 for all E ? E.).

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


1993 ◽  
Vol 03 (03) ◽  
pp. 233-241
Author(s):  
A. RAMAN ◽  
C. PANDU RANGAN

A set of vertices D is a dominating set of a graph G=(V, E) if every vertex in V−D is adjacent to at least one vertex in D. The domatic partition of G is the partition of the vertex set V into a maximum number of dominating sets. In this paper, we present efficient parallel algorithms for finding the domatic partition of Interval graphs, Block graphs and K-trees.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950065
Author(s):  
Xianliang Liu ◽  
Zishen Yang ◽  
Wei Wang

As a variant of minimum connected dominating set problem, two disjoint connected dominating sets (DCDS) problem is to ask whether there are two DCDS [Formula: see text] in a connected graph [Formula: see text] with [Formula: see text] and [Formula: see text], and if not, how to add an edge subset with minimum cardinality such that the new graph has a pair of DCDS. The two DCDS problem is so hard that it is NP-hard on trees. In this paper, if the vertex set [Formula: see text] of a connected graph [Formula: see text] can be partitioned into two DCDS of [Formula: see text], then it is called a DCDS graph. First, a necessary but not sufficient condition is proposed for cubic (3-regular) graph to be a DCDS graph. To be exact, if a cubic graph is a DCDS graph, there are at most four disjoint triangles in it. Next, if a connected graph [Formula: see text] is a DCDS graph, a simple but nontrivial upper bound [Formula: see text] of the girth [Formula: see text] is presented.


1999 ◽  
Vol 8 (6) ◽  
pp. 547-553 ◽  
Author(s):  
JOCHEN HARANT ◽  
ANJA PRUCHNEWSKI ◽  
MARGIT VOIGT

For a graph G on vertex set V = {1, …, n} let k = (k1, …, kn) be an integral vector such that 1 [les ] ki [les ] di for i ∈ V, where di is the degree of the vertex i in G. A k-dominating set is a set Dk ⊆ V such that every vertex i ∈ V[setmn ]Dk has at least ki neighbours in Dk. The k-domination number γk(G) of G is the cardinality of a smallest k-dominating set of G.For k1 = · · · = kn = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found by N. Alon and J. H. Spencer.If ki = di for i = 1, …, n, then the notion of k-dominating set corresponds to the complement of an independent set. A function fk(p) is defined, and it will be proved that γk(G) = min fk(p), where the minimum is taken over the n-dimensional cube Cn = {p = (p1, …, pn) [mid ] pi ∈ ℝ, 0 [les ] pi [les ] 1, i = 1, …, n}. An [Oscr ](Δ22Δn-algorithm is presented, where Δ is the maximum degree of G, with INPUT: p ∈ Cn and OUTPUT: a k-dominating set Dk of G with [mid ]Dk[mid ][les ]fk(p).


2011 ◽  
Vol 61 (6) ◽  
Author(s):  
Lutz Volkmann

AbstractLet k be a positive integer, and let G be a simple graph with vertex set V (G). A vertex of a graph G dominates itself and all vertices adjacent to it. A subset S ⊆ V (G) is a k-tuple dominating set of G if each vertex of V (G) is dominated by at least k vertices in S. The k-tuple domatic number of G is the largest number of sets in a partition of V (G) into k-tuple dominating sets.In this paper, we present a lower bound on the k-tuple domatic number, and we establish Nordhaus-Gaddum inequalities. Some of our results extends those for the classical domatic number.


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2795-2801 ◽  
Author(s):  
Adriana Hansberg ◽  
Bert Randerath ◽  
Lutz Volkmann

For a graph G a subset D of the vertex set of G is a k-dominating set if every vertex not in D has at least k neighbors in D. The k-domination number k(G) is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number 1(G) is the usual domination number (G). Fink and Jacobson showed in 1985 that the inequality ?k(G)?(G)+k?2 is valid for every connected graph G. In this paper, we concentrate on the case k = 2, where k can be equal to ?, and we characterize all claw-free graphs and all line graphs G with ?(G) = ?2(G).


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


10.37236/1093 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Jakob Jonsson

Let $S_{m,n}$ be the graph on the vertex set ${\Bbb Z}_m \times {\Bbb Z}_n$ in which there is an edge between $(a,b)$ and $(c,d)$ if and only if either $(a,b) = (c,d\pm 1)$ or $(a,b) = (c \pm 1,d)$ modulo $(m,n)$. We present a formula for the Euler characteristic of the simplicial complex $\Sigma_{m,n}$ of independent sets in $S_{m,n}$. In particular, we show that the unreduced Euler characteristic of $\Sigma_{m,n}$ vanishes whenever $m$ and $n$ are coprime, thereby settling a conjecture in statistical mechanics due to Fendley, Schoutens and van Eerten. For general $m$ and $n$, we relate the Euler characteristic of $\Sigma_{m,n}$ to certain periodic rhombus tilings of the plane. Using this correspondence, we settle another conjecture due to Fendley et al., which states that all roots of $\det (xI-T_m)$ are roots of unity, where $T_m$ is a certain transfer matrix associated to $\{\Sigma_{m,n} : n \ge 1\}$. In the language of statistical mechanics, the reduced Euler characteristic of $\Sigma_{m,n}$ coincides with minus the partition function of the corresponding hard square model with activity $-1$.


Sign in / Sign up

Export Citation Format

Share Document