scholarly journals Topological indices of the Kneser graph KG n,k

Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 665-672 ◽  
Author(s):  
R. Mohammadyari ◽  
M.R. Darafsheh

In this paper we use transitivity property of the automorphism group of the Kneser graph to calculate its Wiener, Szeged and PI indices.

Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 1989-1996
Author(s):  
R. Mohammadyari ◽  
M.R. Darafsheh

In this paper we use transitivity property of the automorphism group of the bipartite Kneser graph to calculate its Wiener, Szeged and PI indices.


2011 ◽  
Vol 20 (2) ◽  
pp. 163-170
Author(s):  
R. MOHAMMADYARI ◽  
◽  
M. R. DARAFSHEH ◽  

In this paper we use transitivity property of the automorphism group of the double odd graph to calculate its Wiener, Szeged and PI indices.


2017 ◽  
Vol 39 (06) ◽  
pp. 1637-1667 ◽  
Author(s):  
VILLE SALO

We show that on the four-symbol full shift, there is a finitely generated subgroup of the automorphism group whose action is (set-theoretically) transitive of all orders on the points of finite support, up to the necessary caveats due to shift-commutation. As a corollary, we obtain that there is a finite set of automorphisms whose centralizer is $\mathbb{Z}$ (the shift group), giving a finitary version of Ryan’s theorem (on the four-symbol full shift), suggesting an automorphism group invariant for mixing subshifts of finite type (SFTs). We show that any such set of automorphisms must generate an infinite group, and also show that there is also a group with this transitivity property that is a subgroup of the commutator subgroup and whose elements can be written as compositions of involutions. We ask many related questions and prove some easy transitivity results for the group of reversible Turing machines, topological full groups and Thompson’s  $V$ .


2017 ◽  
Vol 82 (2) ◽  
pp. 151-162
Author(s):  
Uzma Ahmad ◽  
Sarfraz Ahmad ◽  
Rabia Yousaf

In QSAR/QSPR studies, topological indices are utilized to predict the bioactivity of chemical compounds. In this paper, the closed forms of different Zagreb indices and atom?bond connectivity indices of regular dendrimers G[n] and H[n] in terms of a given parameter n are determined by using the automorphism group action. It was reported that these connectivity indices are correlated with some physicochemical properties and are used to measure the level of branching of the molecular carbon-atom skeleton.


10.37236/3066 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Che ◽  
Karen L. Collins

A labeling $f: V(G) \rightarrow \{1, 2, \ldots, d\}$ of the vertex set of a graph $G$ is said to be proper $d$-distinguishing if it is a proper coloring of $G$ and any nontrivial automorphism of $G$ maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of $G$, denoted by $\chi_D(G)$, is the minimum $d$ such that $G$ has a proper $d$-distinguishing labeling. Let $\chi(G)$ be the chromatic number of $G$ and $D(G)$ be the distinguishing number of $G$. Clearly, $\chi_D(G) \ge \chi(G)$ and $\chi_D(G) \ge D(G)$. Collins, Hovey and Trenk have given a tight upper bound on $\chi_D(G)-\chi(G)$ in terms of the order of the automorphism group of $G$, improved when the automorphism group of $G$ is a finite abelian group. The Kneser graph $K(n,r)$ is a graph whose vertices are the $r$-subsets of an $n$ element set, and two vertices of $K(n,r)$ are adjacent if their corresponding two $r$-subsets are disjoint. In this paper, we provide a class of graphs $G$, namely Kneser graphs $K(n,r)$, whose automorphism group is the symmetric group, $S_n$, such that $\chi_D(G) - \chi(G) \le 1$. In particular, we prove that $\chi_D(K(n,2))=\chi(K(n,2))+1$ for $n\ge 5$. In addition, we show that $\chi_D(K(n,r))=\chi(K(n,r))$ for $n \ge 2r+1$ and $r\ge 3$.


2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


2018 ◽  
Vol 8 (2) ◽  
pp. 309-316 ◽  
Author(s):  
S. Prabhu ◽  
M. Arulperumjothi ◽  
G. Murugan

Sign in / Sign up

Export Citation Format

Share Document