scholarly journals Preservations of so-metrizable spaces

Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 801-807 ◽  
Author(s):  
Shou Lin ◽  
Ying Ge

A space is called an so-metrizable space if it is a regular space with a ?-locally finite sequentially open network. This paper proves that so-metrizable spaces are preserved under perfect mappings and under closed sequence-covering mappings, which give an affirmative answer to a question on preservations of so-metrizable spaces under some closed mappings. Also, we prove that the closed image of an so-metrizable space is an so-metrizable space if it is a topological group.

2012 ◽  
Vol 49 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Fucai Lin ◽  
Shou Lin ◽  
Heikki Junnila

In this paper, we define the spaces with a regular base at non-isolated points and discuss some metrization theorems. We firstly show that a space X is a metrizable space, if and only if X is a regular space with a σ-locally finite base at non-isolated points, if and only if X is a perfect space with a regular base at non-isolated points, if and only if X is a β-space with a regular base at non-isolated points. In addition, we also discuss the relations between the spaces with a regular base at non-isolated points and some generalized metrizable spaces. Finally, we give an affirmative answer for a question posed by F. C. Lin and S. Lin in [7], which also shows that a space with a regular base at non-isolated points has a point-countable base.


2003 ◽  
Vol 74 (88) ◽  
pp. 121-128 ◽  
Author(s):  
Ying Ge

We give some characterizations of sn-metrizable spaces. We prove that a space is an sn-metrizable space if and only if it has a locally-finite point-star sn-network. As an application of the result, a space is an sn-metrizable space if and only if it is a sequentially quotient, ? (compact), ?-image of a metric space.


2021 ◽  
Vol 19 (1) ◽  
pp. 1145-1152
Author(s):  
Songlin Yang ◽  
Xun Ge

Abstract so-metrizable spaces are a class of important generalized metric spaces between metric spaces and s n sn -metrizable spaces where a space is called an so-metrizable space if it has a σ \sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the “Pomomarev’s method” to prove that a space X X is an so-metrizable space if and only if it is an so-open, compact-covering, σ \sigma -image of a metric space, if and only if it is an so-open, σ \sigma -image of a metric space. In addition, it is shown that so-open mapping is a simplified form of s n sn -open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, s n sn -open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1891
Author(s):  
Orhan Göçür

Do the topologies of each dimension have to be same and metrizable for metricization of any space? I show that this is not necessary with monad metrizable spaces. For example, a monad metrizable space may have got any indiscrete topologies, discrete topologies, different metric spaces, or any topological spaces in each different dimension. I compute the distance in real space between such topologies. First, the passing points between different topologies is defined and then a monad metric is defined. Then I provide definitions and some properties about monad metrizable spaces and PAS metric spaces. I show that any PAS metric space is also a monad metrizable space. Moreover, some properties and some examples about them are presented.


1993 ◽  
Vol 114 (3) ◽  
pp. 439-442 ◽  
Author(s):  
Sidney A. Morris ◽  
Vladimir G. Pestov

We prove that any open subgroup of the free abelian topological group on a completely regular space is a free abelian topological group. Moreover, the free topological bases of both groups have the same covering dimension. The prehistory of this result is as follows. The celebrated Nielsen–Schreier theorem states that every subgroup of a free group is free, and it is equally well known that every subgroup of a free abelian group is free abelian. The analogous result is not true for free (abelian) topological groups [1,5]. However, there exist certain sufficient conditions for a subgroup of a free topological group to be topologically free [2]; in particular, an open subgroup of a free topological group on a kω-space is topologically free. The corresponding question for free abelian topological groups asked 8 years ago by Morris [11] proved to be more difficult and remained open even within the realm of kω-spaces. In the present paper a comprehensive answer to this question is obtained.


2019 ◽  
Vol 56 (4) ◽  
pp. 523-535
Author(s):  
Vladimir V. Tkachuk

Abstract We prove that, for any cofinally Polish space X, every locally finite family of non-empty open subsets of X is countable. It is also established that Lindelöf domain representable spaces are cofinally Polish and domain representability coincides with subcompactness in the class of σ-compact spaces. It turns out that, for a topological group G whose space has the Lindelöf Σ-property, the space G is domain representable if and only if it is Čech-complete. Our results solve several published open questions.


1973 ◽  
Vol 9 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Sidney A. Morris ◽  
H.B. Thompson

For a completely regular space X, G(X) denotes the free topological group on X in the sense of Graev. Graev proves the existence of G(X) by showing that every pseudo-metric on X can be extended to a two-sided invariant pseudo-metric on the abstract group G(X). It is natural to ask if the topology given by these two-sided invariant pseudo-metrics on G(X) is precisely the free topological group topology on G(X). If X has the discrete topology the answer is clearly in the affirmative. It is shown here that if X is not totally disconnected then the answer is always in the negative.


1996 ◽  
Vol 38 (2) ◽  
pp. 171-176
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni ◽  
Yaroslav P. Sysak

A famous theorem of Kegel and Wielandt states that every finite group which is the product of two nilpotent subgroups is soluble (see [1], Theorem 2.4.3). On the other hand, it is an open question whether an arbitrary group factorized by two nilpotent subgroups satisfies some solubility condition, and only a few partial results are known on this subject. In particular, Kegel [6] obtained an affirmative answer in the case of linear groups, and in the same article he also proved that every locally finite group which is the product of two locally nilpotent FC-subgroups is locally soluble. Recall that a group G is said to be an FC-group if every element of G has only finitely many conjugates. Moreover, Kazarin [5] showed that if the locally finite group G = AB is factorized by an abelian subgroup A and a locally nilpotent subgroup B, then G is locally soluble. The aim of this article is to prove the following extension of the Kegel–Wielandt theorem to locally finite products of hypercentral groups.


Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 6115-6129 ◽  
Author(s):  
Xin Liu ◽  
Shou Lin

The notions of networks and k-networks for topological spaces have played an important role in general topology. Pytkeev networks, strict Pytkeev networks and cn-networks for topological spaces are defined by T. Banakh, and S. Gabriyelyan and J. K?kol, respectively. In this paper, we discuss the relationship among certain Pytkeev networks, strict Pytkeev networks, cn-networks and k-networks in a topological space, and detect their operational properties. It is proved that every point-countable Pytkeev network for a topological space is a quasi-k-network, and every topological space with a point-countable cn-network is a meta-Lindel?f D-space, which give an affirmative answer to the following problem [25, 29]: Is every Fr?chet-Urysohn space with a pointcountable cs'-network a meta-Lindel?f space? Some mapping theorems on the spaces with certain Pytkeev networks are established and it is showed that (strict) Pytkeev networks are preserved by closed mappings and finite-to-one pseudo-open mappings, and cn-networks are preserved by pseudo-open mappings, in particular, spaces with a point-countable Pytkeev network are preserved by closed mappings.


Sign in / Sign up

Export Citation Format

Share Document