scholarly journals On evaluations of propositional formulas in countable structures

Filomat ◽  
2016 ◽  
Vol 30 (1) ◽  
pp. 1-13
Author(s):  
Aleksandar Perovic ◽  
Dragan Doder ◽  
Zoran Ognjanovic ◽  
Miodrag Raskovic

Let L be a countable first-order language such that its set of constant symbols Const(L) is countable. We provide a complete infinitary propositional logic (formulas remain finite sequences of symbols, but we use inference rules with countably many premises) for description of C-valued L-structures, where C is an infinite subset of Const(L). The purpose of such a formalism is to provide a general propositional framework for reasoning about F-valued evaluations of propositional formulas, where F is a C-valued L-structure. The prime examples of F are the field of rational numbers Q, its countable elementary extensions, its real and algebraic closures, the field of fractions Q(?), where ? is a positive infinitesimal and so on.

1966 ◽  
Vol 31 (4) ◽  
pp. 633-640 ◽  
Author(s):  
Mitsuru Yasuhara

The equi-cardinality quantifier1 to be used in this article, written as Qx, is characterised by the following semantical rule: A formula QxA(x) is true in a relational system exactly when the cardinality of the set consisting of these elements which make A(x) true is the same as that of the universe. For instance, QxN(x) is true in 〈Rt, N〉 but false in 〈Rl, N〉 where Rt, Rl, and N are the sets of rational numbers, real numbers, and natural numbers, respectively. We notice that in finite domains the equi-cardinality quantifier is the same as the universal quantifier. For this reason, all relational systems considered in the following are assumed infinite.


Author(s):  
HELMUT PRENDINGER ◽  
MITSURU ISHIZUKA ◽  
GERHARD SCHURZ

We present an approach to knowledge compilation that transforms a function-free first-order Horn knowledge base to propositional logic. This form of compilation is important since the most efficient reasoning methods are defined for propositional logic, while knowledge is most conveniently expressed within a first-order language. To obtain compact propositional representations, we employ techniques from (ir)relevance reasoning as well as theory transformation via unfold/fold transformations. Application areas include diagnosis, planning, and vision. Preliminary experiments with a hypothetical reasoner indicate that our method may yield significant speed-ups.


Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Stavros Skopeteas

AbstractClassical Latin is a free word order language, i.e., the order of the constituents is determined by information structure rather than by syntactic rules. This article presents a corpus study on the word order of locative constructions and shows that the choice between a Theme-first and a Locative-first order is influenced by the discourse status of the referents. Furthermore, the corpus findings reveal a striking impact of the syntactic construction: complements of motion verbs do not have the same ordering preferences with complements of static verbs and adjuncts. This finding supports the view that the influence of discourse status on word order is indirect, i.e., it is mediated by information structural domains.


1992 ◽  
Vol 57 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Andrew M. Pitts

AbstractWe prove the following surprising property of Heyting's intuitionistic propositional calculus, IpC. Consider the collection of formulas, ϕ, built up from propositional variables (p, q, r, …) and falsity (⊥) using conjunction (∧), disjunction (∨) and implication (→). Write ⊢ϕ to indicate that such a formula is intuitionistically valid. We show that for each variable p and formula ϕ there exists a formula Apϕ (effectively computable from ϕ), containing only variables not equal to p which occur in ϕ, and such that for all formulas ψ not involving p, ⊢ψ → Apϕ if and only if ⊢ψ → ϕ. Consequently quantification over propositional variables can be modelled in IpC, and there is an interpretation of the second order propositional calculus, IpC2, in IpC which restricts to the identity on first order propositions.An immediate corollary is the strengthening of the usual interpolation theorem for IpC to the statement that there are least and greatest interpolant formulas for any given pair of formulas. The result also has a number of interesting consequences for the algebraic counterpart of IpC, the theory of Heyting algebras. In particular we show that a model of IpC2 can be constructed whose algebra of truth-values is equal to any given Heyting algebra.


Sign in / Sign up

Export Citation Format

Share Document