scholarly journals Existence of nonoscillatory solutions of higher order neutral differential equations

Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2147-2153 ◽  
Author(s):  
T. Candan

This article is concerned with nonoscillatory solutions of higher order nonlinear neutral differential equations with deviating and distributed deviating arguments. By using Knaster-Tarski fixed point theorem, new sufficient conditions are established. Illustrative example is given to show applicability of results.

2013 ◽  
Vol 63 (1) ◽  
Author(s):  
T. Candan ◽  
R. Dahiya

AbstractIn this work, we consider the existence of nonoscillatory solutions of variable coefficient higher order linear neutral differential equations with distributed deviating arguments. We use the Banach contraction principle to obtain new sufficient conditions, which are weaker than those known, for the existence of nonoscillatory solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Youjun Liu ◽  
Jianwen Zhang ◽  
Jurang Yan

In this paper, we consider the existence of nonoscillatory solutions for system of variable coefficients higher-order neutral differential equations with distributed deviating arguments. We use theBanachcontraction principle to obtain new sufficient conditions for the existence of nonoscillatory solutions.


2015 ◽  
Vol 21 (2) ◽  
Author(s):  
Saroj Panigrahi ◽  
Rakhee Basu

AbstractIn this paper, the authors investigated oscillatory and asymptotic behavior of solutions of a class of nonlinear higher order neutral differential equations with positive and negative coefficients. The results in this paper generalize the results of Tripathy, Panigrahi and Basu [Fasc. Math. 52 (2014), 155–174]. We establish new conditions which guarantees that every solution either oscillatory or converges to zero. Moreover, using the Banach Fixed Point Theorem sufficient conditions are obtained for the existence of bounded positive solutions. Examples are considered to illustrate the main results.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2068
Author(s):  
Alberto M. Simões ◽  
Fernando Carapau ◽  
Paulo Correia

In this work, we present sufficient conditions in order to establish different types of Ulam stabilities for a class of higher order integro-differential equations. In particular, we consider a new kind of stability, the σ-semi-Hyers-Ulam stability, which is in some sense between the Hyers–Ulam and the Hyers–Ulam–Rassias stabilities. These new sufficient conditions result from the application of the Banach Fixed Point Theorem, and by applying a specific generalization of the Bielecki metric.


Author(s):  
Zhao Yu-Ping ◽  
Fu Hua

This paper is concerned with existence of nonoscillation solution for a family of second-order neutral differential equations with positive and negative coefficients. A sufficient conditions for existence of nonoscillation solution is obtained by contraction fixed point theorem, special case of the equation has also been studied.


2021 ◽  
Vol 2 (3) ◽  
pp. 9-20
Author(s):  
VARSHINI S ◽  
BANUPRIYA K ◽  
RAMKUMAR K ◽  
RAVIKUMAR K

The paper is concerned with stochastic random impulsive integro-differential equations with non-local conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain inequality techniques.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Youjun Liu ◽  
Jianwen Zhang ◽  
Jurang Yan

New sufficient conditions are obtained for oscillation for the solutions of systems of a class of higher-order quasilinear partial functional differential equations with distributed deviating arguments. The obtained results are illustrated by example.


Sign in / Sign up

Export Citation Format

Share Document