scholarly journals Sharp bounds for the modified multiplicative Zagreb indices of graphs with vertex connectivity at most k

Filomat ◽  
2019 ◽  
Vol 33 (14) ◽  
pp. 4673-4685
Author(s):  
Haiying Wang ◽  
Shaohui Wang ◽  
Bing Wei

Zagreb indices and their modified versions of a molecular graph originate from many practical problems such as two dimensional quantitative structure-activity (2D QSAR) and molecular chirality. Nowadays, they have become important invariants which can be used to characterize the properties of graphs from different aspects. LetVk n (or Ek n respectively) be a set of graphs of n vertices with vertex connectivity (or edge connectivity respectively) at most k. In this paper, we explore some properties of the modified first and second multiplicative Zagreb indices of graphs in Vkn and Ekn. By using analytic and combinatorial tools, we obtain some sharp lower and upper bounds for these indices of graphs in Vk n and Ekn. In addition, the corresponding extremal graphs which attain the lower or upper bounds are characterized. Our results enrich outcomes on studying Zagreb indices and the methods developed in this paper may provide some new tools for investigating the values on modified multiplicative Zagreb indices of other classes of graphs.

2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 514 ◽  
Author(s):  
Monther R. Alfuraidan ◽  
Tomáš Vetrík ◽  
Selvaraj Balachandran

We present lower and upper bounds on the general multiplicative Zagreb indices for bicyclic graphs of a given order and number of pendant vertices. Then, we generalize our methods and obtain bounds for the general multiplicative Zagreb indices of tricyclic graphs, tetracyclic graphs and graphs of given order, size and number of pendant vertices. We show that all our bounds are sharp by presenting extremal graphs including graphs with symmetries. Bounds for the classical multiplicative Zagreb indices are special cases of our results.


2015 ◽  
Vol 26 (03) ◽  
pp. 367-380 ◽  
Author(s):  
Xingqin Qi ◽  
Edgar Fuller ◽  
Rong Luo ◽  
Guodong Guo ◽  
Cunquan Zhang

In spectral graph theory, the Laplacian energy of undirected graphs has been studied extensively. However, there has been little work yet for digraphs. Recently, Perera and Mizoguchi (2010) introduced the directed Laplacian matrix [Formula: see text] and directed Laplacian energy [Formula: see text] using the second spectral moment of [Formula: see text] for a digraph [Formula: see text] with [Formula: see text] vertices, where [Formula: see text] is the diagonal out-degree matrix, and [Formula: see text] with [Formula: see text] whenever there is an arc [Formula: see text] from the vertex [Formula: see text] to the vertex [Formula: see text] and 0 otherwise. They studied the directed Laplacian energies of two special families of digraphs (simple digraphs and symmetric digraphs). In this paper, we extend the study of Laplacian energy for digraphs which allow both simple and symmetric arcs. We present lower and upper bounds for the Laplacian energy for such digraphs and also characterize the extremal graphs that attain the lower and upper bounds. We also present a polynomial algorithm to find an optimal orientation of a simple undirected graph such that the resulting oriented graph has the minimum Laplacian energy among all orientations. This solves an open problem proposed by Perera and Mizoguchi at 2010.


2017 ◽  
Vol 95 (2) ◽  
pp. 134-143 ◽  
Author(s):  
M. Javaid ◽  
Masood Ur Rehman ◽  
Jinde Cao

For a molecular graph, a numeric quantity that characterizes the whole structure of a graph is called a topological index. In the studies of quantitative structure – activity relationship (QSAR) and quantitative structure – property relationship (QSPR), topological indices are utilized to guess the bioactivity of chemical compounds. In this paper, we compute general Randić, first general Zagreb, generalized Zagreb, multiplicative Zagreb, atom-bond connectivity (ABC), and geometric arithmetic (GA) indices for the rhombus silicate and rhombus oxide networks. In addition, we also compute the latest developed topological indices such as the fourth version of ABC (ABC4), the fifth version of GA (GA5), augmented Zagreb, and Sanskruti indices for the foresaid networks. At the end, a comparison between all the indices is included, and the result is shown with the help of a Cartesian coordinate system.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xu Li ◽  
Maqsood Ahmad ◽  
Muhammad Javaid ◽  
Muhammad Saeed ◽  
Jia-Bao Liu

A topological invariant is a numerical parameter associated with molecular graph and plays an imperative role in the study and analysis of quantitative structure activity/property relationships (QSAR/QSPR). The correlation between the entire π-electron energy and the structure of a molecular graph was explored and understood by the first Zagreb index. Recently, Liu et al. (2019) calculated the first general Zagreb index of the F-sum graphs. In the same paper, they also proposed the open problem to compute the general Randić index RαΓ=∑uv∈EΓdΓu×dΓvα of the F-sum graphs, where α∈R and dΓu denote the valency of the vertex u in the molecular graph Γ. Aim of this paper is to compute the lower and upper bounds of the general Randić index for the F-sum graphs when α∈N. We present numerous examples to support and check the reliability as well as validity of our bounds. Furthermore, the results acquired are the generalization of the results offered by Deng et al. (2016), who studied the general Randić index for exactly α=1.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Tongkun Qu ◽  
Mengya He ◽  
Shengjin Ji ◽  
Xia Li

The reformulated Zagreb indices of a graph are obtained from the original Zagreb indices by replacing vertex degrees with edge degrees, where the degree of an edge is taken as the sum of degrees of its two end vertices minus 2. In this paper, we obtain two upper bounds of the first reformulated Zagreb index among all graphs with p pendant vertices and all graphs having key vertices for which they will become trees after deleting their one key vertex. Moreover, the corresponding extremal graphs which attained these bounds are characterized.


2021 ◽  
Vol 37 (1) ◽  
pp. 1-11
Author(s):  
MONTHER R. ALFURAIDAN ◽  
SELVARAJ BALACHANDRAN ◽  
TOMAS VETRIK

"General multiplicative Zagreb indices generalize well-known multiplicative Zagreb indices of graphs. We present lower and upper bounds on the general multiplicative Zagreb indices for unicyclic graphs with given number of vertices and diameter/number of pendant vertices/cycle of given length. All bounds are best possible. Bounds on the classical multiplicative Zagreb indices of unicyclic graphs are corollaries of the general results. "


Sign in / Sign up

Export Citation Format

Share Document