scholarly journals Constructing some logical algebras from EQ-algebras

Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2747-2760
Author(s):  
Rajab Borzooei ◽  
Narges Akhlaghinia ◽  
Xiao Xin ◽  
Mona Kologani

EQ-algebras were introduced by Nov?ak in [16] as an algebraic structure of truth values for fuzzy type theory (FTT). Nov?k and De Baets in [18] introduced various kinds of EQ-algebras such as good, residuated, and lattice ordered EQ-algebras. In any logical algebraic structures, by using various kinds of filters, one can construct various kinds of other logical algebraic structures. With this inspirations, by means of fantastic filters of EQ-algebras we construct MV-algebras. Also, we study prelinear EQ-algebras and introduce a new kind of filter and named it prelinear filter. Then, we show that the quotient structure which is introduced by a prelinear filter is a distributive lattice-ordered EQ-algebras and under suitable conditions, is a De Morgan algebra, Stone algebra and Boolean algebra.

1988 ◽  
Vol 30 (2) ◽  
pp. 137-143 ◽  
Author(s):  
T. S. Blyth ◽  
J. C. Varlet

Recently we introduced the notion of an MS-algebra as a common abstraction of a de Morgan algebra and a Stone algebra [2]. Precisely, an MS-algebra is an algebra 〈L; ∧, ∨ ∘, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that 〈L; ∧, ∨, 0, 1〉 is a distributive lattice with least element 0 and greatest element 1, and x → x∘ is a unary operation such that x ≤ x∘∘, (x ∧ y)∘ = x∘ ∨ y∘ and 1∘ = 0. It follows that ∘ is a dual endomorphism of L and that L∘∘ = {x∘∘ x ∊ L} is a subalgebra of L that is called the skeleton of L and that belongs to M, the class of de Morgan algebras. Clearly, theclass MS of MS-algebras is equational. All the subvarieties of MS were described in [3]. The lattice Λ (MS) of subvarieties of MS has 20 elements (see Fig. 1) and its non-trivial part (we exclude T, the class of one-element algebras) splits into the prime filter generated by M, that is [M, M1], the prime ideal generated by S, that is [B, S], and the interval [K, K2 ∨ K3].


2021 ◽  
Author(s):  
Sérgio Marcelino ◽  
Umberto Rivieccio

Abstract An involutive Stone algebra (IS-algebra) is a structure that is simultaneously a De Morgan algebra and a Stone algebra (i.e. a pseudo-complemented distributive lattice satisfying the well-known Stone identity, ∼ x ∨ ∼ ∼ x ≈ 1). IS-algebras have been studied algebraically and topologically since the 1980’s, but a corresponding logic (here denoted IS ≤ ) has been introduced only very recently. The logic IS ≤ is the departing point for the present study, which we then extend to a wide family of previously unknown logics defined from IS-algebras. We show that IS ≤ is a conservative expansion of the Belnap-Dunn four-valued logic (i.e. the order-preserving logic of the variety of De Morgan algebras), and we give a finite Hilbert-style axiomatization for it. More generally, we introduce a method for expanding conservatively every super-Belnap logic so as to obtain an extension of IS ≤ . We show that every logic thus defined can be axiomatized by adding a fixed finite set of rule schemata to the corresponding super-Belnap base logic. We also consider a few sample extensions of IS ≤ that cannot be obtained in the above- described way, but can nevertheless be axiomatized finitely by other methods. Most of our axiomatization results are obtained in two steps: through a multiple-conclusion calculus first, which we then reduce to a traditional one. The multiple-conclusion axiomatizations introduced in this process, being analytic, are of independent interest from a proof-theoretic standpoint. Our results entail that the lattice of super-Belnap logics (which is known to be uncountable) embeds into the lattice of extensions of IS ≤ . Indeed, as in the super-Belnap case, we establish that the finitary extensions of IS ≤ are already uncountably many.


Author(s):  
Rajab Ali Borzooei ◽  
Narges Akhlaghinia ◽  
Mona Aaly Kologani ◽  
Xiao Long Xin

EQ-algebras were introduced by Nova ́k in [15] as an algebraic structure of truth values for fuzzy type theory (FFT). In this paper, we studied the category of EQ-algebras and showed that it is complete, but it is not cocomplete, in general. We proved that multiplicatively relative EQ-algebras have coequlizers and we calculate coprodut and pushout in a special case. Also, we construct a free EQ-algebra on a singleton.


2014 ◽  
Vol 47 (2) ◽  
Author(s):  
Yu. M. Movsisyan ◽  
V. A. Aslanyan ◽  
Alex Manoogian

AbstractIt is commonly known that the free Boolean algebra on n free generators is isomorphic to the Boolean algebra of Boolean functions of n variables. The free bounded distributive lattice on n free generators is isomorphic to the bounded lattice of monotone Boolean functions of n variables. In this paper, we introduce the concept of De Morgan function and prove that the free De Morgan algebra on n free generators is isomorphic to the De Morgan algebra of De Morgan functions of n variables. This is a solution of the problem suggested by B. I. Plotkin.


1975 ◽  
Vol 27 (4) ◽  
pp. 852-859 ◽  
Author(s):  
Raymond Balbes

In [1], C. C. Chen and G. Grâtzer developed a method for studying Stone algebras by associating with each Stone algebra L, a uniquely determined triple (C(L), D(L), ɸ (L)), consisting of a Boolean algebra C(L), a distributive lattice D(L), and a connecting map ɸ(L). This approach has been successfully exploited by various investigators to determine properties of Stone algebras (e.g. H. Lakser [9] characterized the injective hulls of Stone algebras by means of this technique). The present paper is a continuation of this program.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Natnael Teshale Amare ◽  
Srikanya Gonnabhaktula ◽  
Ch. Santhi Sundar Raj

The notion of an Almost Distributive Lattice (ADL) is a common abstraction of several lattice theoretic and ring theoretic generalizations of Boolean algebra and Boolean rings. In this paper, the set of all L -fuzzy prime ideals of an ADL with truth values in a complete lattice L satisfying the infinite meet distributive law is topologized and the resulting space is discussed.


1973 ◽  
Vol 38 (2) ◽  
pp. 215-226
Author(s):  
Satoko Titani

In [4], I introduced a quasi-Boolean algebra, and showed that in a formal system of simple type theory, from which the cut rule is omitted, wffs form a quasi-Boolean algebra, and that the cut-elimination theorem can be formulated in algebraic language. In this paper we use the result of [4] to prove the cut-elimination theorem in simple type theory. The theorem was proved by M. Takahashi [2] in 1967 by using the concept of Schütte's semivaluation. We use maximal ideals of a quasi-Boolean algebra instead of semivaluations.The logical system we are concerned with is a modification of Schütte's formal system of simple type theory in [1] into Gentzen style.Inductive definition of types.0 and 1 are types.If τ1, …, τn are types, then (τ1, …, τn) is a type.Basic symbols.a1τ, a2τ, … for free variables of type τ.x1τ, x2τ, … for bound variables of type τ.An arbitrary number of constants of certain types.An arbitrary number of function symbols with certain argument places.


2010 ◽  
Vol 60 (1) ◽  
Author(s):  
Ivan Chajda

AbstractHaving an MV-algebra, we can restrict its binary operation addition only to the pairs of orthogonal elements. The resulting structure is known as an effect algebra, precisely distributive lattice effect algebra. Basic algebras were introduced as a generalization of MV-algebras. Hence, there is a natural question what an effect-like algebra can be reached by the above mentioned construction if an MV-algebra is replaced by a basic algebra. This is answered in the paper and properties of these effect-like algebras are studied.


2020 ◽  
pp. 108-117
Author(s):  
Madeleine Al Al-Tahan ◽  
◽  
◽  
Bijan Davvaz

In this paper, we find a relationship between SVNS and neutrosophic N-structures and study it. Moreover, we apply our results to algebraic structures (hyperstructures) and prove that the results on neutrosophic N-substructure (subhyperstructure) of a given algebraic structure (hyperstructure) can be deduced from single valued neutrosophic algebraic structure (hyperstructure) and vice versa.


2021 ◽  
pp. 1-11
Author(s):  
Madeline Al Tahan ◽  
Sarka Hoskova-Mayerova ◽  
Bijan Davvaz

In recent years, fuzzy multisets have become a subject of great interest for researchers and have been widely applied to algebraic structures including groups, rings, and many other algebraic structures. In this paper, we introduce the algebraic structure of fuzzy multisets as fuzzy multi-subnear rings (multi-ideals) of near rings. In this regard, we define different operations on fuzzy multi-ideals of near rings and we generalize some results known for fuzzy ideals of near rings to fuzzy multi-ideals of near rings.


Sign in / Sign up

Export Citation Format

Share Document