scholarly journals Bridging the SNMP gap: Simple network monitoring the internet of things

2016 ◽  
Vol 29 (3) ◽  
pp. 475-487 ◽  
Author(s):  
Mihajlo Savic

Things that form Internet of Things can vary in every imaginable aspect. From simplest devices with barely any processing and memory resources, with communication handled by networking devices like switches and routers to powerful servers that provide needed back-end resources in cloud environments, all are needed for real world implementations of Internet of Things. Monitoring of the network and server parts of the infrastructure is a well known area with numerous approaches that enable efficient monitoring. Most prevalent technology used is SNMP that forms the part of the IP stack and is as such universally supported. On the other hand, ?things? domain is evolving very fast with a number of competing technologies used for communication and monitoring. When discussing small, constrained devices, the two most promising protocols are CoAP and MQTT. Combined, they cover wide area of communication needs for resource constrained devices, from simple messaging system to one that enables connecting to RESTful world. In this paper we present a possible solution to bridge the gap in monitoring by enabling SNMP access to monitoring data obtained from constrained devices that cannot feasibly support SNMP or are not intended to be used in such a manner.

2012 ◽  
Vol 50 (12) ◽  
pp. 144-149 ◽  
Author(s):  
Anuj Sehgal ◽  
Vladislav Perelman ◽  
Siarhei Kuryla ◽  
Jurgen Schonwalder

Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) will consist of billions (50 billions by 2020) of interconnected heterogeneous devices denoted as “Smart Objects:” tiny, constrained devices which are going to be pervasively deployed in several contexts. To meet low-latency requirements, IoT applications must rely on specific architectures designed to handle the gigantic stream of data coming from Smart Objects. This paper propose a novel Cloud architecture for Big Stream applications that can efficiently handle data coming from Smart Objects through a Graph-based processing platform and deliver processed data to consumer applications with low latency. The authors reverse the traditional “Big Data” paradigm, where real-time constraints are not considered, and introduce the new “Big Stream” paradigm, which better fits IoT scenarios. The paper provides a performance evaluation of a practical open-source implementation of the proposed architecture. Other practical aspects, such as security considerations, and possible business oriented exploitation plans are presented.


Constrained devices are commonly used in the Internet of Things systems. Since these devices have limited communication and computation resources, communication protocols which are lightweight are needed. A lightweight protocol called Message Queue Telemetry Transport, which is a publish/subscribe messaging protocol, is utilized with the constrained devices. Hence, this paper is aimed at monitoring data by using machine-to-machine communication protocol with the help of an IoT device, Raspberry Pi.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3637
Author(s):  
Abd-Elhamid M. Taha ◽  
Abdulmonem M. Rashwan ◽  
Hossam S. Hassanein

The importance of securing communications on the Internet of Things (IoT) cannot be overstated. This is especially the case in light of the increasing proliferation of IoT devices and instances, as well as the growing dependence on their usage. Meanwhile, there have recently been mounting concerns over a wide array of vulnerabilities in IoT communications. The objective of this work is to address constraints in IoT devices that are “resource-constrained”, which are devices that are limited in terms of computing, energy, communication, or range capabilities, whether in terms of nominal or temporal limitations. Specifically, we propose a framework for resource-aiding constrained devices to facilitate secure communication. Without loss of generalization, the framework’s viability is illustrated by focusing on a group of security functions that utilize message authentication codes, which is a strongly representative example of resource-intensive security functions. Aspects of the framework are further demonstrated in processing cores commonly used in commercial IoT devices.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6101
Author(s):  
Aleksi Peltonen ◽  
Eduardo Inglés ◽  
Sampsa Latvala ◽  
Dan Garcia-Carrillo ◽  
Mohit Sethi ◽  
...  

The emergence of radio technologies, such as Zigbee, Z-Wave, and Bluetooth Mesh, has transformed simple physical devices into smart objects that can understand and react to their environment. Devices, such as light bulbs, door locks, and window blinds, can now be connected to, and remotely controlled from, the Internet. Given the resource-constrained nature of many of these devices, they have typically relied on the use of universal global shared secrets for the initial bootstrapping and commissioning phase. Such a scheme has obvious security weaknesses and it also creates undesirable walled-gardens where devices of one ecosystem do not inter-operate with the other. In this paper, we investigate whether the standard Extensible Authentication Protocol (EAP) framework can be used for secure bootstrapping of resource-constrained devices. EAP naturally provides the benefits of per-device individual credentials, straightforward revocation, and isolation of devices. In particular, we look at the Nimble out-of-band authentication for EAP (EAP-NOOB) as a candidate EAP authentication method. EAP-NOOB greatly simplifies deployment of such devices as it does not require them to be pre-provisioned with credentials of any sort. Based on our implementation experience on off-the-shelf hardware, we demonstrate that lightweight EAP-NOOB is indeed a way forward to securely bootstrap such devices.


2020 ◽  
Vol 23 (4) ◽  
pp. 405-413
Author(s):  
E. B. Aleksandrova ◽  
А. А. Shtyrkina ◽  
A. V. Yarmak

The Internet of Things may include sensors, actuators, analyzers, logical controllers, which together form distributed network of heterogeneous devices. Group-based approach to authentication may be relevant when the number of nodes is very large and there are constrained devices among them. Post-quantum schemes as candidates in NIST competition are considered. Lattices are chosen as best candidates for building group-oriented schemes for IoT due to high performance, relatively small key sizes, well researched mathematical problem. To give flexibility to the lattice-based group-oriented authentication protocols, the basis delegation mechanism was considered as an approach that takes into account the hierarchy in the Internet of Things systems.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4312 ◽  
Author(s):  
Daniel A. F. Saraiva ◽  
Valderi Reis Quietinho Leithardt ◽  
Diandre de Paula ◽  
André Sales Mendes ◽  
Gabriel Villarrubia González ◽  
...  

With the growing number of heterogeneous resource-constrained devices connected to the Internet, it becomes increasingly challenging to secure the privacy and protection of data. Strong but efficient cryptography solutions must be employed to deal with this problem, along with methods to standardize secure communications between these devices. The PRISEC module of the UbiPri middleware has this goal. In this work, we present the performance of the AES (Advanced Encryption Standard), RC6 (Rivest Cipher 6), Twofish, SPECK128, LEA, and ChaCha20-Poly1305 algorithms in Internet of Things (IoT) devices, measuring their execution times, throughput, and power consumption, with the main goal of determining which symmetric key ciphers are best to be applied in PRISEC. We verify that ChaCha20-Poly1305 is a very good option for resource constrained devices, along with the lightweight block ciphers SPECK128 and LEA.


Sign in / Sign up

Export Citation Format

Share Document