scholarly journals Effect of rare earth Ce on the microstructure, physical properties and thermal stability of a new lead-free solder

2011 ◽  
Vol 47 (1) ◽  
pp. 11-21 ◽  
Author(s):  
W. Chen ◽  
J. Kong ◽  
W.J. Chen

In this paper, in order to develop a low silver content lead-free solder with good overall properties, a newly designed solder alloys of Sn-0.3Ag-0.7Cu-20Bi-xCe type, with addition of varying amounts of rare earth Ce (0.05 mass%, 0.1 mass% and 0.2 mass%) were studied. The melting temperature of Sn-0.3Ag- 0.7Cu can be decreased substantially through addition of 20 mass% Bi; while the segregation of Bi element in the microstructure of the as-cast alloys can be relieved by micro-alloying with trace amount of rare earth Ce. Besides, aging treatments (160?C held for 6 h) of these solder alloys imply that appropriate amount of Ce addition can not only depress the diffusion induced aggregation of Bi in the microstructure but promote the homogenization during annealing. Compared with Bi-free Sn-0.3Ag-0.7Cu solder, Sn-0.3Ag-0.7Cu- 20Bi exhibits better wettability. More excitingly, the wetting property of Sn-0.3Ag-0.7Cu-20Bi can be further improved by doping little amounts of Ce, especially 0.5 mass%, in which case the spreading area of the solder can be increased to the largest extent. On the whole, the present study reveals that Sn-0.3Ag-0.7Cu- 20Bi-xCe (x=0.05-0.1) is a promising lead-free solder candidate considering the microstructure, melting temperature and wetting properties.

2020 ◽  
Vol 26 (4) ◽  
pp. 184-187
Author(s):  
Ngoc Binh Duong

Intermetallic compounds (IMCs) formation between lead-free solder alloys (Sn-9Zn and Sn-8Zn-3Bi) and Ni/Au surface finish copper substrate were studied. Reaction between the solder and the substrate was carried out at regular soldering temperature, approx. 50 °C above the melting temperature of the solder alloys. Results indicated that Au-Zn was the IMC formed at the interface and the Au layer which is electro-plated on the substrate has completely dissolved into the solder alloys. The amount of Au available at the interface is an important factor that influent the morphology of the IMC with thicker Au layer on the substrate resulted in thicker layer of IMC at the interface. Although Bi does not taken part in the composition of IMC, it influent the formation of IMC, the IMC formed in the Sn9Zn/substrate interface was Au5Zn3, meanwhile it was g2-AuZn3 in the Sn-8Zn-3Bi/substrate interface.


2002 ◽  
Vol 31 (9) ◽  
pp. 921-927 ◽  
Author(s):  
C. M. L. Wu ◽  
D. Q. Yu ◽  
C. M. T. Law ◽  
L. Wang

2019 ◽  
Vol 32 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Ahmet Mustafa Erer ◽  
Serkan Oguz

Purpose This paper aims to invastigate of the wetting and interfacial properties of Sn-(3-x)Ag-0.5Cu-(x)Bi (x = 0.5, 1 and 2 in Wt.%) Pb-free solder alloys at various temperatures ( 250, 280 and 310°C) on Cu substrate in Ar atmosphere. Design/methodology/approach In this study, new Sn-(3-x)Ag-0.5Cu-xBi systems, low Ag content quaternary lead-free solder alloys, were produced by adding 0.5, 1 and 2% Bi to the near-eutectic SAC305 alloy. The wetting angles of three new alloys, Sn-2.5Ag-0.5Cu-0.5 Bi(SAC-0.5 Bi), Sn-2Ag-0.5Cu-1Bi(SAC-1Bi) and Sn-1Ag-0.5Cu-2Bi(SAC-2Bi) were measured by sessile drop technique on the Cu substrate in argon atmosphere. Findings In accordance with the interfacial analyses, intermetallic compounds of Cu3Sn, Cu6Sn5, and Ag3Sn were detected at the SAC-Bi/Cu interface. The results of wetting tests show that the addition of 1 Wt.% Bi improves the wetting properties of the Sn-3Ag-0.5Cu solder. The lowest wetting angle (θ) was obtained as 35,34° for Sn-2Ag-0.5Cu-1Bi alloy at a temperature of 310 °C. Originality/value This work was carried out with our handmade experiment set and the production of the quaternary lead-free solder alloy used in wetting tests belongs to us. Experiments were conducted using the sessile drop method in accordance with wetting tests.


2003 ◽  
Vol 32 (4) ◽  
pp. 235-243 ◽  
Author(s):  
Zhigang Chen ◽  
Yaowu Shi ◽  
Zhidong Xia ◽  
Yanfu Yan

Author(s):  
Balint Medgyes ◽  
Sandor Adam ◽  
Lajos Tar ◽  
Vadimas Verdingovas ◽  
Rajan Ambat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document