Flow stress of lead-free solder alloys over a broad range of temperatures and strain rates

Author(s):  
T. Chen ◽  
X. Y. Niu ◽  
Z. G. Li ◽  
X. F. Shu
Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Abstract Electronic components in downhole oil drilling and gas industry applications, automotive and avionics may exposed to high temperatures (> 150°C) and high strain rates (1–100 per sec) during storage, operation and handling which can contribute to the failures of electronics devices. Temperatures in these applications can exceed 200°C, which is closed to melting point for SAC alloys. The microstructure for lead free solder alloys constantly evolves when subjected to thermal aging for sustained periods with accompanying degradation in mechanical properties of solder alloys. In this paper, evolution of microstructure and Anand parameters for unaged and aged SAC (SAC105 and SAC-Q) lead free solder alloys at high strain rates has been investigated induced due to thermal aging. The microstructure of the SAC solder is studied using scanning electron microscopy (SEM) for different strain rate and elevating temperature. The thermal aged leadfree SAC solder alloys specimen has been tested at high strain rates (10–75 per sec) at elevated temperatures of (25°C–200°C). The SAC leadfree solder samples were subjected to isothermal aging at 50°C up to 1-year before testing. To describe the material constitutive behavior, Anand Viscoplastic model has been used. Effect of thermal aging on Anand parameters has been investigated. In order to verify the accuracy of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test. FEA based method has been used to simulate the drop events using Anand constitutive model. Hysteresis loop and Plastic work density has been computed from FEA.


Author(s):  
Balint Medgyes ◽  
Sandor Adam ◽  
Lajos Tar ◽  
Vadimas Verdingovas ◽  
Rajan Ambat ◽  
...  

2016 ◽  
Vol 5 (4) ◽  
pp. 266-274
Author(s):  
Takeharu HAYASHI ◽  
Hirohiko WATANABE ◽  
Masaaki TAKABE ◽  
Yoshinori EBIHARA ◽  
Tatsuhiko ASAI ◽  
...  

2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


Author(s):  
Mohamed Amine Alaya ◽  
Laszlo Gal ◽  
Tamas Hurtony ◽  
Balint Medgyes ◽  
Daniel Straubinger ◽  
...  

2010 ◽  
Vol 122 (2-3) ◽  
pp. 480-484 ◽  
Author(s):  
Marek Kopyto ◽  
Boguslaw Onderka ◽  
Leszek A. Zabdyr

Sign in / Sign up

Export Citation Format

Share Document