scholarly journals Electronic structure of planar-quasicycled organic molecules with intramolecular hydrogen bond

2007 ◽  
Vol 72 (3) ◽  
pp. 265-273
Author(s):  
Alexei Pankratov ◽  
Alexei Shalabay

By means of the HF/6-311G(d,p) method, the electronic structure of the series of organic molecules, among which are malonaldehyde, acetylacetone, thiomalonaldehyde,?the derivatives of aniline 2-XC6H4NH2, phenol 2-XC6H4OH, benzenethiol 2-XC6H4SH (X = CHO, COOH, COO-, NO, NO2, OH, OCH3, SH, SCH3, F, Cl, Br), 8-hydroxyquinoline, 8-mercaptoquinoline, tropolone, has been studied. The intramolecular hydrogen bond (IHB) has been established to lead to a local electron redistribution in quasicycle, and primarily to the electron density transfer between the direct IHB participants - from the hydrogen atom toward the proton-aceptor atom. On forming the IHB of the S-H???O type, the electron density in general decreases on the sulphohydryl hydrogen atom and increases on the sulphur atom.

In the article the results of the quantum chemical study of copper (II) solvato-complexes with acetonitrile (AN), tetrafluoroborate anion (BF4–) and 3-hydroxyflavone (flv) of the composition [Cu(AN)6]2+, [Cu(BF4)(AN)5]+, [Cu(flv)(AN)5]2+, [Cu(flv)(BF4)(AN)4]+ are presented. Calculations were done using density function theory (DFT) on the M06-2X/6-311++G(d,p) level of theory. Obtained results were interpreted in terms of complexes geometry and topology of electron density distribution using non-covalent interactions (NCI) approach. It was shown that flv molecule is a monodentate ligand in copper (II) complexes and coordinates central atom via carbonyl oxygen. Intramolecular hydrogen bond that exists in an isolated flv molecule was found to be broken upon [Cu(flv)(AN)5]2+ complex formation. In [Cu(flv)(AN)5]2+ complex, a significant rotation of phenyl ring over the planar chromone fragment was spotted as a consequence of intramolecular hydrogen bond breaking. Upon inclusion of BF4– anion to the first solvation shell of Cu2+, an intracomplex hydrogen bond was formed between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion. NCI analysis had shown that a hydrogen bond between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion is significantly stronger than intramolecular hydrogen bond in an isolated flv molecule. In addition, flexible phenyl ring of flv molecule in [Cu(flv)(BF4)(AN)4]+ complex was found to be internally stabilized by the weak van der Waals attraction between oxygen atoms of chromone ring and phenyl hydrogens. These evidences led to a conclusion that [Cu(flv)(BF4)(AN)4]+ complex is more stable, comparing to the in [Cu(flv)(AN)5]2+ complex.


1979 ◽  
Vol 44 (8) ◽  
pp. 2494-2506 ◽  
Author(s):  
Otto Exner ◽  
Jorga Smolíková ◽  
Václav Jehlička ◽  
Ahmad S. Shawali

Substituted 2-bromo-1-phenylglyoxal 2-phenylhydrazones IIIa-f exist in tetrachloromethane or benzene solutions prevailingly in E-configuration and in conformation A with an intramolecular hydrogen bond. The latter was evidenced by the N-H valence frequency at 3 290 cm-1 and by 1H NMR shifts with reference to derivatives without a carbonyl group - α-chlorobenzaldehyde phenylhydrazones V. From dipole moments of IIIa-d, measured in benzene solution, the contribution of the hydrogen bond (μH) was evaluated to 17 . 10-30 C m. This quantity is twice larger than in any other reported compound but the direction of the vector is as usual: approximately from H to N. In structurally similar derivatives of hydroxylamine, substituted 2-phenylglyoxylhydroximoyl chlorides IVa-d, no intramolecular hydrogen bond was detected; the dipole moments found were interpreted in terms of the Z-configuration and the prevailing conformation G.


2019 ◽  
Vol 43 (33) ◽  
pp. 13134-13142 ◽  
Author(s):  
Neeru Arya ◽  
Sandeep Kumar Mishra ◽  
N. Suryaprakash

The extensive NMR investigations reveal the presence of E-isomers in the derivative of N′-benzylidenebenzohydrazide. The different conformer populations are controlled by the strength of intramolecular hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document