carbon double bond
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 35)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Author(s):  
◽  
Struan Cummins

<p>This thesis describes the synthesis, structures and reactivities of gallium and aluminium complexes supported by β-diketiminato ligands ([CR{C(R)N(R’)}₂]-, abbrev. [(BDIR’)]-).  Chapter 1 gives a general introduction into the trends and properties that distinguish the heavier p-block elements from their lighter counterparts. An introduction into the theory of multiple bond formation, both homonuclear and heteronuclear, in the heavy p-block elements is provided and a summary of the sterically demanding ligands required to stabilise these complexes is introduced. The β-diketiminato ligand framework utilised in this study is introduced and the methods of generation of low valent gallium and aluminium complexes supported by the BDIDIPP ligand are discussed.  Chapter 2 discusses the reactivity of the complex BDIDIPPGa with diazo- compounds in the quest to isolate a complex with a formal gallium-carbon double bond. BDIDIPPGa reacts with two equivalents of both trimethylsilyldiazomethane and diazofluorene, presumably through the target gallium-carbon double bond intermediate. No reaction is observed with di-tert-butyldiazomethane, while BDIDIPPGa catalyses the decomposition of diphenyldiazomethane into tetraphenylethene. Three new β-diketiminato gallium(I) complexes were synthesised: ArBDIDIPPGa, BDIAr*Ga and BDIAr’Ga. ArBDIDIPPGa also reacted with two equivalents of trimethylsilyldiazomethane, presumably through the target gallium-carbon double bond intermediate. BDIAr*Ga and BDIAr’Ga both inserted into the C-H bond of trimethylsilyldiazomethane to give BDIAr*Ga(H)C(N2)SiMe₃ and BDIAr’Ga(H)C(N2)SiMe₃ respectively. Upon addition of diazofluorene to BDIAr*Ga, one of the aromatic protons of the BDIAr* ligand was abstracted by the diazofluorene, resulting in coordination of one of the flanking phenyl groups to the gallium centre.  Chapter 3 discusses an investigation into the formation of formal double bonds between aluminium and phosphorus, and gallium and phosphorus. The proposed ‘deprotonation/elimination’ method, reacting BDIDIPPM(PHAr)Cl (M = Al, Ga Ar = Ph, Mes) with nBuLi, resulted in the formation of intractable mixtures of products. Direct synthesis by the addition of MesPLi₂ to BDIDIPPMCl₂ (M = Al, Ga) resulted in the formation of BDIDIPPM(PHMes)Cl (M = Al, Ga). Changing the elimination product to TMS-Cl, through the synthesis of BDIDIPPM(P(TMS)Ph)Cl (M = Al, Ga), resulted in the synthesis of BDIDIPPAl(P(TMS)Ph)Cl, which showed no signs of elimination occurring upon heating to 110 °C. BDIDIPPGa(P(TMS)Ph)Cl could not be isolated, potentially as the complex was undergoing the desired elimination of TMS-Cl, but the resulting complex was decomposing. Changing the elimination product to ethane, through the synthesis of BDIDIPPAl(PHMes)Et, resulted in no sign of elimination occurring upon heating to 110 °C. Reduction of BDIDIPPMCl₂ (M = Al, Ga) in the presence of bistrimethylsilylacetylene, as part of the synthesis of BDIDIPPMLi₂ (M = Al, Ga) salts, was unsuccessful, as was the reaction of BDIDIPPGa with bistrimethylsilylacetylene. Reduction of MesPCl₂ with potassium metal in the presence of BDIDIPPGa resulted in an intractable mixture of products, reduction with magnesium resulted in the formation of (MesP)₃ and (MesP)₄. Addition of MesPH₂ to BDIDIPPGa resulted in the formation of BDIDIPPGa(H)P(H)Mes, which did not undergo H₂ elimination at 110 °C. The synthesis of BDIDIPPAl was unsuccessful as the product could not be isolated cleanly. The synthesis of ArBDIDIPPAl resulted in the intramolecular rearrangement of the ligand to give a five-membered aluminium containing ring. The synthesis of BDIAr*Al stalled at the formation of BDIAr*Al(Me)I due to the steric bulk of the ligand blocking the second substitution of iodine from occurring.  Chapter 4 discusses the reactivity of the primary phosphanide complexes BDIDIPPAl(PHMes)Cl, BDIDIPPAl(PHMes)Et and BDIDIPPGa(H)P(H)Mes with phenyl acetylene, 4-nitro-phenyl isocyanate, phenyl isothiocyanate, dicyclohexyl carbodiimide, cyclohexene, benzophenone, benzaldehyde, selenium, sulfur, and methyl iodide. Reactivity was not observed for phenyl acetylene, dicyclohexyl carbodiimide or benzophenone with any of the phosphanides. Reactivity with the phosphanides was observed with cyclohexene, however rapid decomposition of the products occurred and they were unable to be identified. BDIDIPPAl(PHMes)Cl and BDIDIPPGa(H)P(H)Mes showed no reactivity with benzaldehyde, however, the ethyl ligand of BDIDIPPAl(PHMes)Et reacted with the aldehyde proton, eliminating ethane and substituting the PhC(O)- ligand onto the aluminium centre. Reactivity with the phosphanides was observed with both sulfur and selenium, however multiple different products were formed, none of which were successfully isolated. Reactivity between the phosphanides and methyl iodide was observed, with the P-M bond appearing to be cleaved and formation of a M-I bond occurring. 4-nitro-phenyl isocyanate and phenyl isothiocyanate underwent insertion reactions into the M-P bond, however only BDIDIPPAl(Cl)N(4-NO₂-Ph)C(O)P(H)Mes was able to be isolated and fully characterised.  Finally, chapter 5 summarises the results of this research and provides an outlook at the future direction of this field of research.</p>


2021 ◽  
Author(s):  
◽  
Struan Cummins

<p>This thesis describes the synthesis, structures and reactivities of gallium and aluminium complexes supported by β-diketiminato ligands ([CR{C(R)N(R’)}₂]-, abbrev. [(BDIR’)]-).  Chapter 1 gives a general introduction into the trends and properties that distinguish the heavier p-block elements from their lighter counterparts. An introduction into the theory of multiple bond formation, both homonuclear and heteronuclear, in the heavy p-block elements is provided and a summary of the sterically demanding ligands required to stabilise these complexes is introduced. The β-diketiminato ligand framework utilised in this study is introduced and the methods of generation of low valent gallium and aluminium complexes supported by the BDIDIPP ligand are discussed.  Chapter 2 discusses the reactivity of the complex BDIDIPPGa with diazo- compounds in the quest to isolate a complex with a formal gallium-carbon double bond. BDIDIPPGa reacts with two equivalents of both trimethylsilyldiazomethane and diazofluorene, presumably through the target gallium-carbon double bond intermediate. No reaction is observed with di-tert-butyldiazomethane, while BDIDIPPGa catalyses the decomposition of diphenyldiazomethane into tetraphenylethene. Three new β-diketiminato gallium(I) complexes were synthesised: ArBDIDIPPGa, BDIAr*Ga and BDIAr’Ga. ArBDIDIPPGa also reacted with two equivalents of trimethylsilyldiazomethane, presumably through the target gallium-carbon double bond intermediate. BDIAr*Ga and BDIAr’Ga both inserted into the C-H bond of trimethylsilyldiazomethane to give BDIAr*Ga(H)C(N2)SiMe₃ and BDIAr’Ga(H)C(N2)SiMe₃ respectively. Upon addition of diazofluorene to BDIAr*Ga, one of the aromatic protons of the BDIAr* ligand was abstracted by the diazofluorene, resulting in coordination of one of the flanking phenyl groups to the gallium centre.  Chapter 3 discusses an investigation into the formation of formal double bonds between aluminium and phosphorus, and gallium and phosphorus. The proposed ‘deprotonation/elimination’ method, reacting BDIDIPPM(PHAr)Cl (M = Al, Ga Ar = Ph, Mes) with nBuLi, resulted in the formation of intractable mixtures of products. Direct synthesis by the addition of MesPLi₂ to BDIDIPPMCl₂ (M = Al, Ga) resulted in the formation of BDIDIPPM(PHMes)Cl (M = Al, Ga). Changing the elimination product to TMS-Cl, through the synthesis of BDIDIPPM(P(TMS)Ph)Cl (M = Al, Ga), resulted in the synthesis of BDIDIPPAl(P(TMS)Ph)Cl, which showed no signs of elimination occurring upon heating to 110 °C. BDIDIPPGa(P(TMS)Ph)Cl could not be isolated, potentially as the complex was undergoing the desired elimination of TMS-Cl, but the resulting complex was decomposing. Changing the elimination product to ethane, through the synthesis of BDIDIPPAl(PHMes)Et, resulted in no sign of elimination occurring upon heating to 110 °C. Reduction of BDIDIPPMCl₂ (M = Al, Ga) in the presence of bistrimethylsilylacetylene, as part of the synthesis of BDIDIPPMLi₂ (M = Al, Ga) salts, was unsuccessful, as was the reaction of BDIDIPPGa with bistrimethylsilylacetylene. Reduction of MesPCl₂ with potassium metal in the presence of BDIDIPPGa resulted in an intractable mixture of products, reduction with magnesium resulted in the formation of (MesP)₃ and (MesP)₄. Addition of MesPH₂ to BDIDIPPGa resulted in the formation of BDIDIPPGa(H)P(H)Mes, which did not undergo H₂ elimination at 110 °C. The synthesis of BDIDIPPAl was unsuccessful as the product could not be isolated cleanly. The synthesis of ArBDIDIPPAl resulted in the intramolecular rearrangement of the ligand to give a five-membered aluminium containing ring. The synthesis of BDIAr*Al stalled at the formation of BDIAr*Al(Me)I due to the steric bulk of the ligand blocking the second substitution of iodine from occurring.  Chapter 4 discusses the reactivity of the primary phosphanide complexes BDIDIPPAl(PHMes)Cl, BDIDIPPAl(PHMes)Et and BDIDIPPGa(H)P(H)Mes with phenyl acetylene, 4-nitro-phenyl isocyanate, phenyl isothiocyanate, dicyclohexyl carbodiimide, cyclohexene, benzophenone, benzaldehyde, selenium, sulfur, and methyl iodide. Reactivity was not observed for phenyl acetylene, dicyclohexyl carbodiimide or benzophenone with any of the phosphanides. Reactivity with the phosphanides was observed with cyclohexene, however rapid decomposition of the products occurred and they were unable to be identified. BDIDIPPAl(PHMes)Cl and BDIDIPPGa(H)P(H)Mes showed no reactivity with benzaldehyde, however, the ethyl ligand of BDIDIPPAl(PHMes)Et reacted with the aldehyde proton, eliminating ethane and substituting the PhC(O)- ligand onto the aluminium centre. Reactivity with the phosphanides was observed with both sulfur and selenium, however multiple different products were formed, none of which were successfully isolated. Reactivity between the phosphanides and methyl iodide was observed, with the P-M bond appearing to be cleaved and formation of a M-I bond occurring. 4-nitro-phenyl isocyanate and phenyl isothiocyanate underwent insertion reactions into the M-P bond, however only BDIDIPPAl(Cl)N(4-NO₂-Ph)C(O)P(H)Mes was able to be isolated and fully characterised.  Finally, chapter 5 summarises the results of this research and provides an outlook at the future direction of this field of research.</p>


2021 ◽  
Vol 2 (11) ◽  
pp. 1170-1175
Author(s):  
Wangjing Ma ◽  
Xiao TC ◽  
Liu BN ◽  
Xu ZC ◽  
Jin ZQ ◽  
...  

The accelerated UV visible photocatalytic carbon-carbon double bond isomerization of Linear Alpha Olefins (LAO) with 12-Tungstophosphate Acids (12-TPA) as an efficient, environmentally-friendly and recyclable catalyst was described, which produced the corresponding Linear Internal Olefins (LIO) in general high selectivity and high yields.


2021 ◽  
Author(s):  
Zhong-Sheng Nong ◽  
Ling Zhu ◽  
Tian-Ci Wang ◽  
Lian-Feng Fan ◽  
Pu-Sheng Wang ◽  
...  

Abstract Asymmetric functionalization of alkenes represents one of the most attractive and straightforward methods to achieve precise assembly of molecular complexity from cost-effectiveness and sustainability viewpoints. Although the regio- and enantioselective transformations on the carbon-carbon double bond of alkenes have been extensively studied, those on the allylic C−H bonds of inactivated alkenes remain to be explored. Here, we report a Pd-catalyzed branch- and enantioselective allylic C−H alkylation, capable of accommodating almost all types of α-alkenes that range from feedstocks annually manufactured on million-ton scale to olefins tethering a wide scope of appended functionalities, providing unconventional access to chiral γ,δ-unsaturated amides. Notably, mechanistic studies reveal that the regioselectivity is not only governed by the coordination pattern of nucleophiles but also regulated by the ligational behaviors of ligands, highlighting the importance of the mono-ligation of chiral phosphoramidite ligands in provoking high levels of stereo- and branch-selectivity via a nucleophile-coordination enabled inner-sphere allylation pathway.


2021 ◽  
Author(s):  
Wangjing Ma ◽  
Bonan Liu ◽  
Duanda Wang ◽  
Jun Zhao ◽  
Lu Zhang ◽  
...  

Carbon–carbon double bond (CCDB) isomerization is a method for synthesizing new organic compounds from olefins and their derivatives, which was based on C=C migration along carbon chain and cis/trans transform, and it plays a vital role in the fields of organic synthesis, synthesis of daily chemicals, raw oil’s development and synthesis of natural products and so on. In this paper, advances of five types of catalytic methods for CCDB of olefins and their derivatives since the 1960s were discussed in detail; Based on his recent work, the author mainly introduces the application and development of photocatalysis in CCDB of olefins and their derivatives.


2021 ◽  
Vol 21 (12) ◽  
pp. 9681-9704
Author(s):  
Defeng Zhao ◽  
Iida Pullinen ◽  
Hendrik Fuchs ◽  
Stephanie Schrade ◽  
Rongrong Wu ◽  
...  

Abstract. Highly oxygenated organic molecules (HOM) are found to play an important role in the formation and growth of secondary organic aerosol (SOA). SOA is an important type of aerosol with significant impact on air quality and climate. Compared with the oxidation of volatile organic compounds by ozone (O3) and hydroxyl radical (OH), HOM formation in the oxidation by nitrate radical (NO3), an important oxidant at nighttime and dawn, has received less attention. In this study, HOM formation in the reaction of isoprene with NO3 was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). A large number of HOM, including monomers (C5), dimers (C10), and trimers (C15), both closed-shell compounds and open-shell peroxy radicals (RO2), were identified and were classified into various series according to their formula. Their formation pathways were proposed based on the peroxy radicals observed and known mechanisms in the literature, which were further constrained by the time profiles of HOM after sequential isoprene addition to differentiate first- and second-generation products. HOM monomers containing one to three N atoms (1–3N-monomers) were formed, starting with NO3 addition to carbon double bond, forming peroxy radicals, followed by autoxidation. 1N-monomers were formed by both the direct reaction of NO3 with isoprene and of NO3 with first-generation products. 2N-monomers (e.g., C5H8N2On(n=7–13), C5H10N2On(n=8–14)) were likely the termination products of C5H9N2On⚫, which was formed by the addition of NO3 to C5-hydroxynitrate (C5H9NO4), a first-generation product containing one carbon double bond. 2N-monomers, which were second-generation products, dominated in monomers and accounted for ∼34 % of all HOM, indicating the important role of second-generation oxidation in HOM formation in the isoprene + NO3 reaction under our experimental conditions. H shift of alkoxy radicals to form peroxy radicals and subsequent autoxidation (“alkoxy–peroxy” pathway) was found to be an important pathway of HOM formation. HOM dimers were mostly formed by the accretion reaction of various HOM monomer RO2 and via the termination reactions of dimer RO2 formed by further reaction of closed-shell dimers with NO3 and possibly by the reaction of C5–RO2 with isoprene. HOM trimers were likely formed by the accretion reaction of dimer RO2 with monomer RO2. The concentrations of different HOM showed distinct time profiles during the reaction, which was linked to their formation pathway. HOM concentrations either showed a typical time profile of first-generation products, second-generation products, or a combination of both, indicating multiple formation pathways and/or multiple isomers. Total HOM molar yield was estimated to be 1.2 %-0.7%+1.3%, which corresponded to a SOA yield of ∼3.6 % assuming the molecular weight of C5H9NO6 as the lower limit. This yield suggests that HOM may contribute a significant fraction to SOA yield in the reaction of isoprene with NO3.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2341
Author(s):  
Qi Li ◽  
Hong-Lei Lin ◽  
Ming Zheng ◽  
Mutlu Ozcan ◽  
Hao Yu

This study aimed to establish the minimum radiant exposure and irradiance to trigger an adequate polymerization of a photo-polymerized resin cement. In total, 220 disc-shaped specimens (diameter of 10 mm and thickness of 0.1 mm) were fabricated using a photo-polymerized resin cement (Variolink N-transparent, Ivoclar Vivadent). To investigate the minimum radiant exposure, the specimens were polymerized with radiant exposures of 1, 2, 3, 4, 5, 6, and 18 J/cm2 (n = 20). During polymerization, the irradiance was maintained at 200 mW/cm2. To investigate the minimum irradiance, the specimens were polymerized with irradiances of 50, 100, 150, and 200 mW/cm2 (n = 20). During polymerization, the radiant exposure was maintained at the previously determined minimum radiant exposure. The Vickers microhardness (HV) and degree of conversion (DC) of the carbon double bond of the specimens were measured to determine the degree of polymerization of the specimens. The results were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test (p < 0.05). In the investigation of the minimum radiant exposure, the HV and DC of the specimens polymerized with a radiant exposure from 1 to 5 J/cm2 were significantly lower than those with 18 J/cm2 (all p < 0.05). However, no significant difference in HV and DC was found between the specimens polymerized with 6 J/cm2 and 18 J/cm2 (p > 0.05). In the investigation of the minimum irradiance, the specimens polymerized with an irradiance of 50 mW/cm2 had significantly lower HV and DC than the specimens polymerized with an irradiance of 200 mW/cm2 (p < 0.05). However, no significant difference in the HV and DC was found among the specimens cured with irradiances of 100, 150, and 200 mW/cm2 (p > 0.05). In conclusion, the minimum radiant exposure and irradiance to trigger an adequate polymerization of the light-cured resin cement were 6 J/cm2 and 100 mW/cm2, respectively.


Sign in / Sign up

Export Citation Format

Share Document