Hydrogen bonding, configuration and conformation of substituted α-oxo oximes and hydrazones

1979 ◽  
Vol 44 (8) ◽  
pp. 2494-2506 ◽  
Author(s):  
Otto Exner ◽  
Jorga Smolíková ◽  
Václav Jehlička ◽  
Ahmad S. Shawali

Substituted 2-bromo-1-phenylglyoxal 2-phenylhydrazones IIIa-f exist in tetrachloromethane or benzene solutions prevailingly in E-configuration and in conformation A with an intramolecular hydrogen bond. The latter was evidenced by the N-H valence frequency at 3 290 cm-1 and by 1H NMR shifts with reference to derivatives without a carbonyl group - α-chlorobenzaldehyde phenylhydrazones V. From dipole moments of IIIa-d, measured in benzene solution, the contribution of the hydrogen bond (μH) was evaluated to 17 . 10-30 C m. This quantity is twice larger than in any other reported compound but the direction of the vector is as usual: approximately from H to N. In structurally similar derivatives of hydroxylamine, substituted 2-phenylglyoxylhydroximoyl chlorides IVa-d, no intramolecular hydrogen bond was detected; the dipole moments found were interpreted in terms of the Z-configuration and the prevailing conformation G.

1964 ◽  
Vol 42 (12) ◽  
pp. 2674-2683 ◽  
Author(s):  
A. Balasubramanian ◽  
J. B. Capindale ◽  
W. F. Forbes

The ultraviolet spectra of a number of 2,4-dinitrodiphenylamines suggest that these compounds are generally non-planar in a number of different solvents. The infrared and ultraviolet spectral data in different solvents also suggest that an intramolecular hydrogen bond is present in these molecules, at least in inert solvents. There is evidence that a p-nitro substituent is necessary to increase the positive charge on the amino group sufficiently to permit it to form this fairly strong type of hydrogen bond.


1990 ◽  
Vol 68 (1) ◽  
pp. 266-273 ◽  
Author(s):  
L. C. Stewart ◽  
M. Kates ◽  
P. W. Yang ◽  
H. H. Mantsch

A series of diphytanylglycerol phospholipids, i.e., diphytanylglycerol phosphate (PA), diphytanylglycerol phosphoglycerophosphate (PGP), the tri- and tetra-methyl derivatives of PGP, and the 2-deoxyglycerol analogue of PGP (dPGP) were studied by Fourier transform infrared spectroscopy. The use of the "deoxy" and methylated analogues of PGP, as well as that of PA and PGP of varying degrees of ionization, allowed the assignment of characteristic infrared bands associated with the phosphate groups. Analysis of these phosphate bands showed that at neutral pH, each of the two phosphate moieties in PGP is singly ionized, whereas in dPGP the phosphomonoester is doubly ionized. This is a consequence of the marked increase in the pK of one of the P-OH groups on the terminal phosphate of PGP (pK > 11), owing to the formation of an intramolecular hydrogen bond between the head group glycerol hydroxyl and the phosphate groups of PGP. Such an intramolecular hydrogen bond can not be formed by the dPGP analogue, and thus both negative charges in dPGP are located at the terminal phosphomonoester group. The O=P—OH groups of PGP also forms a network of intermolecular hydrogen bonds, the exact nature of which depends on concentration and degree of ionization. The possibility of a complex network of hydrogen bonds within (intramolecular) and between (intermolecular) anionic membrane lipids such as that found in PGP, is consistent with the hypothesis that these lipids function as proton-conducting pathways in membranes.Key words: phospholipids, infrared, hydrogen bonding, phosphatidylglycerophosphate, 2-deoxyphosphatidylglycerophosphate.


1981 ◽  
Vol 59 (8) ◽  
pp. 1205-1207 ◽  
Author(s):  
Francesco A. Bottino ◽  
Maria L. Longo ◽  
Domenico Sciotto ◽  
Michele Torre

The variable temperature 60 MHz 1H nmr spectra of some heterocyclic azomethines exclude the presence of rotational isomerism. Chemical shift values and stereospecific long-range couplings are used to establish that s-trans is the existing conformation. In the case of the pyrrole derivatives a chelated s-trans rotamer is indicated, depending on the presence of an intramolecular hydrogen bond.


2016 ◽  
Vol 14 (47) ◽  
pp. 11199-11211 ◽  
Author(s):  
Andrei V. Afonin ◽  
Alexander V. Vashchenko ◽  
Mark V. Sigalov

Novel equations have been derived for the assessment of the E intramolecular hydrogen bond energy based on the experimental1H NMR data and the calculated QTAIM topologicalVandρparameters of the hydrogen bond critical point.


1981 ◽  
Vol 46 (3) ◽  
pp. 729-739 ◽  
Author(s):  
Aleksandr I. Artemenko ◽  
Inga V. Tikunova ◽  
Evgenii K. Anufriev ◽  
Václav Jehlička ◽  
Otto Exner

Dipole moments of nine aromatic hydroxamic acids Ia-Ii and of nine N,O-diacylhydroxylamines IIa-IIi were measured in dioxan solution. The results for hydroxamic acids are interpreted in terms of the Zsp conformation (A) with an intramolecular hydrogen bond contributing considerably to the total dipole moment; the conformation is similar to that of peroxy acids but the hydrogen bond is weaker. A similar interpretation is possible for N-phenylbenzhydroxamic acids using the dipole moment data from the literature. New data for N,O-diacylhydroxylamine agree with the previously established nonplanar conformation (L). If axially unsymetrical aryl groups are present, they take one of the two coplanar positions independently of the other moiety; hence the effective dipole moments do not differ too much from the assumption of a statistical population of all conformations.


2017 ◽  
Vol 53 (92) ◽  
pp. 12469-12472 ◽  
Author(s):  
Gregory T. Rushton ◽  
Erik C. Vik ◽  
William G. Burns ◽  
Roger D. Rasberry ◽  
Ken D. Shimizu

A molecular rotor is slowed by a hydrogen bonding guest that disrupts an intramolecular hydrogen bond, thus accelerating the rate of rotation.


2014 ◽  
Vol 50 (94) ◽  
pp. 14892-14895 ◽  
Author(s):  
L. Čechová ◽  
E. Procházková ◽  
I. Císařová ◽  
M. Dračínský ◽  
Z. Janeba

Unique isolation of pairs of planar rotamers, planamers, as chemical species differing only in nitroso group orientation, separable through the presence of a single intramolecular hydrogen bond, is reported.


Sign in / Sign up

Export Citation Format

Share Document