scholarly journals A linear solvation energy relationship study for the reactivity of 2-substituted cyclohex-1-enecarboxylic and 2-substituted benzoic acids with diazodiphenylmethane in aprotic and protic solvents

2007 ◽  
Vol 72 (12) ◽  
pp. 1217-1227 ◽  
Author(s):  
Jasmina Nikolic ◽  
Gordana Uscumlic

The rate constants for the reaction of 2-substituted cyclohex-1-enecarboxylic acids and the corresponding 2-substituted benzoic acids with diazodiphenylmethane were determined in various aprotic solvents at 30 ?C. In order to explain the kinetic results through solvent effects, the second order rate constants of the reaction of the examined acids were correlated using the Kamlet-Taft solvatochromic equation. The correlations of the kinetic data were carried out by means of multiple linear regression analysis and the solvent effects on the reaction rates were analyzed in terms of the contributions of the initial and transition state. The signs of the equation coefficients support the proposed reaction mechanism. The quantitative relationship between the molecular structure and the chemical reactivity is discussed, as well as the effect of geometry on the reactivity of the examined molecules.

2009 ◽  
Vol 74 (12) ◽  
pp. 1335-1357 ◽  
Author(s):  
Gordana Uscumlic ◽  
Jasmina Nikolic

Solvent effects on the reactivity of cycloalkenecarboxylic, cycloalkeneacetic, 2-substituted cyclohex-1-enecarboxylic, 2-substituted benzoic, 2-substituted cyclohex-1-eneacetic, 2-substituted phenylacetic, 2-phenylcyclohex-1-enecarboxylic, 2-phenylbenzoic and 2-phenylacrylic acids with diazodiphenylmethane (DDM) were investigated. In order to explain the kinetic results through solvent effects, the second-order rate constants for the reaction of the examined acids with DDM were correlated using the Kamlet-Taft solvatochromic equation. The correlations of the kinetic data were realized by means of multiple linear regression analysis and the solvent effects on the reaction rates were analyzed in terms of the contributions of the initial and the transition state. The signs of the equation coefficients support the proposed mechanism. Solvation models for all the investigated acids are suggested. The quantitative relationship between the molecular structure and the chemical reactivity is also discussed.


2012 ◽  
Vol 77 (10) ◽  
pp. 1311-1338 ◽  
Author(s):  
Sasa Drmanic ◽  
Jasmina Nikolic ◽  
Aleksandar Marinkovic ◽  
Bratislav Jovanovic

Protic and aprotic solvent effects on the reactivity of picolinic, nicotinic and isonicotinic acid, as well as of some substituted nicotinic acids with diazodiphenylmethane (DDM) were investigated. In order to explain the kinetic results through solvent effects, the second-order rate constants for the reaction of the examined acids with DDM were correlated using the Kamlet-Taft solvatochromic equation. The correlations of the kinetic data were carried out by means of the multiple linear regression analysis and the solvent effects on the reaction rates were analyzed in terms of the contributions of the initial and the transition state. The signs of the equation coefficients support the already known reaction mechanism. The solvatation models for all the investigated acids are suggested and related to their specific structure.


1988 ◽  
Vol 66 (11) ◽  
pp. 2673-2686 ◽  
Author(s):  
Michael H. Abraham ◽  
Priscilla L. Grellier ◽  
Jose-Luis M. Abboud ◽  
Ruth M. Doherty ◽  
Robert W. Taft

Solvent effects on a number of different processes have been surveyed, and results of the application of multiple linear regression analysis are discussed. The processes examined include examples of solubility of gases or vapours, distribution coefficients of solutes between water and a series of solvents, and solvent effects on conformational equilibria, on keto–enol tautomerism, and on reaction rates. It is shown that two particular equations, that due to Koppel and Palm and extended by Makitra and Pirig, and that due to Abraham, Kamlet, and Taft, can cope quite satisfactorily with solvent effects on these various processes. It is pointed out that interpretation of parameters obtained from equations that involve macroscopic quantities such as ΔG≠ or ΔG0 is not necessarily straightforward, and that some model is needed in order to interpret these macroscopic quantities in terms of microscopic quantities that can characterise, for example, solute–solvent interactions.


2004 ◽  
Vol 69 (8-9) ◽  
pp. 601-610 ◽  
Author(s):  
Jasmina Nikolic ◽  
Gordana Uscumlic ◽  
Vera Krstic

The rate constants for the reaction of diazodiphenylmethane with 2-(2-substituted cyclohex-1-enyl)acetic acids and 2-(2-substituted phenyl)acetic acids, previously determined in seven hydroxylic solvents, were correlated using the total solvatochromic equation, of the form logk = logk0 + s?*+ a? + b?, the two-parameter model, logk=logk0 + s?*+ a? and a single parameter model logk = logk0 + b?, where ?*is a measure of the solvent polarity, ? represents the scale of solvent hydrogen bond acceptor basicities and ? represents the scale of solvent hydrogen bond donor acidities. The correlations of the kinetic data were carried out by means of multiple linear regression analysis and the solvent effects on the reaction rates were analyzed in terms of initial state and transition state contributions.


2009 ◽  
Vol 74 (12) ◽  
pp. 1359-1370 ◽  
Author(s):  
Sasa Drmanic ◽  
Aleksandar Marinkovic ◽  
Bratislav Jovanovic

The rate constants for the reactions of diazodiphenylmethane (DDM) with 6-substituted nicotinic acids in aprotic solvents at 30?C were determined. The obtained second order rate constants in aprotic solvents, together with literature data for benzoic and nicotinic acids in protic solvents, were used for the calculation of solvent effects, employing the Kamlet-Taft solvatochromic equation (linear solvation energy relationship - LSER) in the form: log k = log k0 + + s?*+ a? + b?. The correlations of the kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The sign of the equation coefficients (s, a and b) were in agreement with the postulated reaction mechanism, and the mode of the solvent influences on the reaction rate is discussed based on the correlation results. A similar contribution of the non-specific solvent effect and electrophilic solvation was observed for all acids, while the highest contribution of nucleophilic solvation was influenced by their high acidity. Correlation analysis of the rate data with substituent ?p parameters in an appropriate solvent using the Hammett equation was also performed. The substituent effect on the acid reactivity was higher in aprotic solvents of higher dipolarity/polarizability. The mode of the transmission of the substituent effect is discussed in light of the contribution of solute-solvent interaction on the acid reactivity.


2000 ◽  
Vol 65 (7) ◽  
pp. 481-490
Author(s):  
Sasa Drmanic ◽  
Bratislav Jovanovic ◽  
Milica Misic-Vukovic

Rate constants have been determined for the reactions of diazodiphenylmethane with a number of 6-substituted nicotinic acids and p-substituted benzoic acids in twelve alcohols. Acomparative study was used to evaluate and compare the Hammett r values and solvent effects. Multiple correlations of the log k values for the reactions of 6-substituted nicotinic acids and p-substituted benzoic acids in 12 alcohols with groups of suitable solvent parameters are very successful. The transmission of electronic effects through the pyridine ring system in compared with that in benzene.


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


2000 ◽  
Vol 65 (12) ◽  
pp. 839-846
Author(s):  
Jasmina Nikolic ◽  
Gordana Uscumlic ◽  
Vera Krstic

Rate constants for the reaction of diazodiphenylmethane with cyclohex-1-enylcarboxylic acid and 2-methylcyclohex-1-enylcarboxylic acid were determined in nine aprotic solvents, as well as in seven protic solvents, at 30?C using the appropriate UV-spectroscopic method. In protic solvents the unsubsituted acid displayed higher reaction rates than the methyl-substituted one. The results in aprotic solvents showed quite the opposite, and the reaction rates were considerably lower. In order to explain the obtained results through solvent effects, reaction rate constants (k) of the examined acids were correlated using the total solvatochromic equation of the form: log k=logk0+s?*+a?+b?, where ?* is the measure of the solvent polarity, a represents the scale of the solvent hydrogen bond donor acidities (HBD) and b represents the scale of the solvent hydrogen bond acceptor basicities (HBA). The correlation of the kinetic data were carried out by means of multiple linear regression analysis and the opposite effects of aprotic solvents, as well as the difference in the influence of protic and aprotic solvents on the reaction of the two examined acids with DDM were discussed. The results presented in this paper for cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids were compared with the kinetic data for benzoic acid obtained in the same chemical reaction, under the same experimental conditions.


2013 ◽  
Vol 11 (12) ◽  
pp. 1964-1975 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar Koppel

AbstractThe second-order rate constants k for the alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, in aqueous 50.9% acetonitrile have been measured spectrophotometrically at 25°C. The log k values for meta and para derivatives correlated well with the Hammett σm,p substituent constants. The log k values for ortho-substituted phenyl benzoates showed good correlations with the Charton equation, containing the inductive, σI, resonance, σ○ R, and steric, E s B, and Charton υ substituent constants. For ortho derivatives the predicted (log k X)calc values were calculated with equation (log k ortho)calc = (log k H AN)exp + 0.059 + 2.19σI + 0.304σ○ R + 2.79E s B − 0.0164ΔEσI — 0.0854ΔEσ○ R, where DE is the solvent electrophilicity, ΔE = E AN — E H20 = −5.84 for aqueous 50.9% acetonitrile. The predicted (log k X)calc values for phenyl ortho-, meta- and para-substituted benzoates in aqueous 50.9% acetonitrile at 25°C precisely coincided with the experimental log k values determined in the present work.The substituent effects from the benzoyl moiety and aryl moiety were compared by correlating the log k values for the alkaline hydrolysis of phenyl esters of substituted benzoic acids, X-C6H4CO2C6H5, in various media with the corresponding log k values for substituted phenyl benzoates, C6H5CO2C6H4-X.


Sign in / Sign up

Export Citation Format

Share Document