scholarly journals Dispersive solid phase micro-extraction of mercury(II) from environmental water and vegetable samples with ionic liquid modified graphene oxide nanoparticles

2017 ◽  
Vol 82 (5) ◽  
pp. 551-565 ◽  
Author(s):  
Atefeh Nasrollahpour ◽  
Seyyed Moradi ◽  
Seyyed Moradi

A new dispersive solid phase micro-extraction (dispersive-SPME) method for separation and preconcentration of mercury(II) using ionic liquid modified magnetic reduced graphene oxide (IL-MrGO) nanoparticles, prior to the measurement by cold vapour atomic absorption spectrometry (CV-AAS) has been developed. The IL-MrGO composite was characterized by Brunauer? Emmett?Teller method (BET) for adsorption-desorption measurement, thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The method is based on the sorption of mercury( II) on IL-MrGO nanoparticles due to electrostatic interaction and complex formation of ionic liquid part of IL-MrGO with mercury(II). The effect of experimental parameters for preconcentration of mercury(II), such as solution type, concentration and volume of the eluent, pH, time of the sorption and desorption, amount of the sorbent and coexisting ion concentration have been optimized. Under the optimized conditions, a linear response was obtained in the concentration range of 0.08?10 ng mL-1 with a determination coefficient of 0.9995. The limit of detection (LOD) of the method at a signal to noise ratio of 3 was 0.01 ng mL-1. Intra-day and inter-day precisions were obtained equal to 3.4 and 4.5 %, respectively. The dispersive solid phase micro-extraction of mercury(II) on IL-MrGO nanoparticles coupled with cold vapour atomic absorption spectrometry was successfully used for extraction and determination of mercury(II) in water and vegetable samples.

2021 ◽  
Vol 4 (02) ◽  
pp. 47-59
Author(s):  
Somayeh Mirza Mirza ◽  
Azadeh Yahya Meymandi

The exposure of lead in workplace air and human workers of battery manufacturing factory was evaluated determined by nanotechnology since 2019-2020. Human whole blood (HWB) for subject and healthy peoples (25-55, Men, 40 N) and workplace air (40N) was prepared based on NIOSH sampling. 10 mL of HWB samples added to 20 mg of mixture ionic liquid/ ligand ([HMIM][PF6]/APDC) modified on graphene oxide nanostructures(GONs) at pH=6. After sonication, the lead ions separated/extracted by dispersive ionic liquid solid phase micro extraction (DIL-SPME) and determined by flame atomic absorption spectrometry (F-AAS). All air samples in workplace were analyzed based on NIOSH process. The results showed us the negative correlation between Pb concentration in human blood subject and healthy peoples (r=0.24). The range concentrations of lead in human subject, healthy peoples and workplace air were obtained 193.4-543.7 µg L-1, 85.6-175.9 µgL-1 and 44.7-81.5 µgm-3, respectively. The LOD, linear rang, enrichment factor(EF) and RSD% were achieved 1.25 µg L-1, 5.0- 310 µg L-1, 19.6 and less than 5% by procedure. The method was validated by standard reference material (SRM), the electrothermal atomic absorption spectrometry (ET-AAS) and ICP-MS analyzer for human samples.


Sign in / Sign up

Export Citation Format

Share Document