КОКУС ЧОҢДУКТАРДЫН ЫКТЫМАЛДУУЛУКТАРЫН БӨЛҮШТҮРҮҮ ФУНКЦИЯСЫН ОКУТУУНУН ЫКМАЛАРЫ

2020 ◽  
pp. 168-173
Author(s):  
Аалиева Бурул

Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Свойства функции распределения обучения и доказательства. Х может быть, чтобы принять параметры диапазона значений (а, б), что функция распределения вероятностей равна приращению. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Hence, the characteristic of the probability distribution of discrete random variables Non-decreasing functions, ∫ _ (- ∞) ^ ∞▒ 〖P (x) ax = 1〗. In the case of an individual, if the values of a random variable (a, b) are located within ∫_a ^ b▒ 〖P (x) ax = 1〗 Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative. DOI: 10.35254/bhu.2019.50.1 ВЕСТНИК БИШКЕКСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. No4(50) 2019 169 Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. X кокус чондугу PP(xx < xx1) ыктымалдуулукта x ден кичине маанилерди кабыл алат; X кокус чондугу xx1 ≤ xx < xx2барабарсыздыктын ыктымалдуулугу PP(xx1 ≤ xx < xx2) түрүндө канааттандырат. Үзгүлтүксүз кокус чоңдуктарды мүнөздөөнүн дагы бир башкача жолу ыктымалдуулукту бөлүштүрүүнүн жиктелиш функциясын киргизүү, тутамдык функциясынын биринчи туундусун табуу. Демек,тутамдык функция жиктелиш функциясынын баштапкы функциясы болорун, дискреттик кокус чондуктардын ыктымалдуулуктарынын бөлүштүрүүсүн мунөздөө. Жиктелиш функциясы кемибөөчү функция, ∫ ff(xx)dddd = 1 ∞ −∞ . Жекече учурда, эгерде кокус чоңдуктардын мүмкүн болгон маанилери (a,b) аралыгында жайгашса, анда � ff(xx)dddd = 1 bb aa Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative.

Author(s):  
Olesya Martyniuk ◽  
Stepan Popina ◽  
Serhii Martyniuk

Introduction. Mathematical modeling of economic processes is necessary for the unambiguous formulation and solution of the problem. In the economic sphere this is the most important aspect of the activity of any enterprise, for which economic-mathematical modeling is the tool that allows to make adequate decisions. However, economic indicators that are factors of a model are usually random variables. An economic-mathematical model is proposed for calculating the probability distribution function of the result of economic activity on the basis of the known dependence of this result on factors influencing it and density of probability distribution of these factors. Methods. The formula was used to calculate the random variable probability distribution function, which is a function of other independent random variables. The method of estimation of basic numerical characteristics of the investigated functions of random variables is proposed: mathematical expectation that in the probabilistic sense is the average value of the result of functioning of the economic structure, as well as its variance. The upper bound of the variation of the effective feature is indicated. Results. The cases of linear and power functions of two independent variables are investigated. Different cases of two-dimensional domain of possible values of indicators, which are continuous random variables, are considered. The application of research results to production functions is considered. Examples of estimating the probability distribution function of a random variable are offered. Conclusions. The research results allow in the probabilistic sense to estimate the result of the economic structure activity on the basis of the probabilistic distributions of the values of the dependent variables. The prospect of further research is to apply indirect control over economic performance based on economic and mathematical modeling.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4931-4942
Author(s):  
Mohamed Mohamed

In communication theory, for possible outcomes of an experiment, we have two basic problems for the statement of the experimenter: we may not have enough information (vague statement) or some of the information may be incorrect, which make inaccurate in either or both of these situations. In this article, a measure of inaccuracy and its residual between distributions of concomitants of generalized order statistics (1os) and parent random variable are extended. Results of inaccuracy for family distributions and stochastic comparisons are obtained. Furthermore, some properties of the proposed measure are discussed. The unique characterization of the distribution function of parent random variable by the inaccuracy is shown.


1987 ◽  
Vol 102 (2) ◽  
pp. 329-349 ◽  
Author(s):  
Philip S. Griffin ◽  
William E. Pruitt

Let X, X1, X2,… be a sequence of non-degenerate i.i.d. random variables with common distribution function F. For 1 ≤ j ≤ n, let mn(j) be the number of Xi satisfying either |Xi| > |Xj|, 1 ≤ i ≤ n, or |Xi| = |Xj|, 1 ≤ i ≤ j, and let (r)Xn = Xj if mn(j) = r. Thus (r)Xn is the rth largest random variable in absolute value from amongst X1, …, Xn with ties being broken according to the order in which the random variables occur. Set (r)Sn = (r+1)Xn + … + (n)Xn and write Sn for (0)Sn. We will refer to (r)Sn as a trimmed sum.


2018 ◽  
Vol 47 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Jalal Chachi

In this paper, rst a new notion of fuzzy random variables is introduced. Then, usingclassical techniques in Probability Theory, some aspects and results associated to a randomvariable (including expectation, variance, covariance, correlation coecient, etc.) will beextended to this new environment. Furthermore, within this framework, we can use thetools of general Probability Theory to dene fuzzy cumulative distribution function of afuzzy random variable.


2018 ◽  
Vol 2018 (2) ◽  
pp. 39-49
Author(s):  
Igor KRAVCHUK ◽  

Market of negotiable financial instruments is an immanent component of the financial system and is in a two-way relationship with other financial institutions and real sector of the economy in terms of ensuring its stable functioning. Possible market shocks can adversely affect state of the economy; therefore regulators should carry out constant market surveillance to detect and prevent early possible market violations, by calculating (in particular) the composite stress index. To construct a composite index, correlation analysis, generalized autoregressive conditional heteroscedasticity model, standardization based on the integral distribution function, seasonal adjustment and determination of a long-term trend based on filtering are used. It is proposed to calculate the stress index of Ukraine’s market of negotiable financial instruments on the basis of market data by balanced averaging of the following sub-indices: (i) stocks (UX stock yield volatility, CMAX indicator, market efficiency coefficient); (ii) debt securities (sovereign spread and CDS spread); and (iii) derivatives (indicator of the change in the number of open futures positions for the UX stock). Aforementioned were standardized using the integral distribution function. The author’s analysis of the proposed composite stress index shows that dominant factors affecting the situation in Ukraine’s market of securities and derivatives are intra-national ones, which have become dominant since 2014. At present, the stress index of Ukraine’s market of negotiable financial instruments is still of little importance to reflect economic situation in the state, given weak development of the market and its meager role for financing and reflecting the corporate activity.


Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 5931-5947
Author(s):  
Hatami Mojtaba ◽  
Alamatsaz Hossein

In this paper, we propose a new transformation of circular random variables based on circular distribution functions, which we shall call inverse distribution function (id f ) transformation. We show that M?bius transformation is a special case of our id f transformation. Very general results are provided for the properties of the proposed family of id f transformations, including their trigonometric moments, maximum entropy, random variate generation, finite mixture and modality properties. In particular, we shall focus our attention on a subfamily of the general family when id f transformation is based on the cardioid circular distribution function. Modality and shape properties are investigated for this subfamily. In addition, we obtain further statistical properties for the resulting distribution by applying the id f transformation to a random variable following a von Mises distribution. In fact, we shall introduce the Cardioid-von Mises (CvM) distribution and estimate its parameters by the maximum likelihood method. Finally, an application of CvM family and its inferential methods are illustrated using a real data set containing times of gun crimes in Pittsburgh, Pennsylvania.


Author(s):  
M. Vidyasagar

This chapter provides an introduction to some elementary aspects of information theory, including entropy in its various forms. Entropy refers to the level of uncertainty associated with a random variable (or more precisely, the probability distribution of the random variable). When there are two or more random variables, it is worthwhile to study the conditional entropy of one random variable with respect to another. The last concept is relative entropy, also known as the Kullback–Leibler divergence, which measures the “disparity” between two probability distributions. The chapter first considers convex and concave functions before discussing the properties of the entropy function, conditional entropy, uniqueness of the entropy function, and the Kullback–Leibler divergence.


2019 ◽  
Vol 69 (2) ◽  
pp. 453-468
Author(s):  
Demetrios P. Lyberopoulos ◽  
Nikolaos D. Macheras ◽  
Spyridon M. Tzaninis

Abstract Under mild assumptions the equivalence of the mixed Poisson process with mixing parameter a real-valued random variable to the one with mixing probability distribution as well as to the mixed Poisson process in the sense of Huang is obtained, and a characterization of each one of the above mixed Poisson processes in terms of disintegrations is provided. Moreover, some examples of “canonical” probability spaces admitting counting processes satisfying the equivalence of all above statements are given. Finally, it is shown that our assumptions for the characterization of mixed Poisson processes in terms of disintegrations cannot be omitted.


1997 ◽  
Vol 82 (3) ◽  
pp. 968-976 ◽  
Author(s):  
Hiroko Kitaoka ◽  
Béla Suki

Kitaoka, Hiroko, and Béla Suki. Branching design of the bronchial tree based on a diameter-flow relationship. J. Appl. Physiol. 82(3): 968–976, 1997.—We propose a method for designing the bronchial tree where the branching process is stochastic and the diameter ( d) of a branch is determined by its flow rate (Q). We use two principles: the continuum equation for flow division and a power-law relationship between d and Q, given by Q ∼ d n, where n is the diameter exponent. The value of n has been suggested to be ∼3. We assume that flow is divided iteratively with a random variable for the flow-division ratio, defined as the ratio of flow in the branch to that in its parent branch. We show that the cumulative probability distribution function of Q, P(>Q) is proportional to Q−1. We analyzed prior morphometric airway data (O. G. Raabe, H. C. Yeh, H. M. Schum, and R. F. Phalen, Report No. LF-53, 1976) and found that the cumulative probability distribution function of diameters, P(> d), is proportional to d −n, which supports the validity of Q ∼ d n since P(>Q) ∼ Q−1. This allowed us to assign diameters to the segments of the flow-branching pattern. We modeled the bronchial trees of four mammals and found that their statistical features were in good accordance with the morphometric data. We conclude that our design method is appropriate for robust generation of bronchial tree models.


1969 ◽  
Vol 6 (02) ◽  
pp. 409-418 ◽  
Author(s):  
Eugene Lukacs

Let X(t) be a stochastic process whose parameter t runs over a finite or infinite n terval T. Let t 1 , t 2 ɛ T, t 1 〈 t2; the random variable X(t 2) – X(t 1) is called the increment of the process X(t) over the interval [t 1, t 2]. A process X(t) is said to be homogeneous if the distribution function of the increment X(t + τ) — X(t) depends only on the length τ of the interval but is independent of the endpoint t. Two intervals are said to be non-overlapping if they have no interior point in common. A process X(t) is called a process with independent increments if the increments over non-overlapping intervals are stochastically independent. A process X(t) is said to be continuous at the point t if plimτ→0 [X(t + τ) — X(t)] = 0, that is if for any ε &gt; 0, limτ→0 P(| X(t + τ) — X(t) | &gt; ε) = 0. A process is continuous in an interval [A, B] if it is continuous in every point of [A, B].


Sign in / Sign up

Export Citation Format

Share Document