scholarly journals Multifrequency radio observations of SNR J0536-6735 (N 59B) with associated pulsar

2012 ◽  
pp. 69-76 ◽  
Author(s):  
L.M. Bozzetto ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
Horta de ◽  
M. Stupar

We present a study of new Australian Telescope Compact Array (ATCA) observations of supernova remnant, SNR J0536-6735. This remnant appears to follow a shell morphology with a diameter of D=36x29 pc (with 1 pc uncertainty in each direction). There is an embedded HII region on the northern limb of the remnant which made various analysis and measurements (such as flux density, spectral index and polarisation) difficult. The radio-continuum emission followed the same structure as the optical emission, allowing for extent and flux density estimates at 20 cm. We estimate the surface brightness at 1 GHz of 2.55x10?21 Wm?2 Hz?1 sr?1 for the SNR. Also, we detect a distinctive radio-continuum point source which confirms the previous suggestion of this remnant being associated with pulsar wind nebula (PWN). The tail of this remnant is not seen in the radio-continuum images and is only seen in the optical and X-ray images.

2008 ◽  
Vol 4 (S259) ◽  
pp. 141-144
Author(s):  
Lisa Harvey-Smith ◽  
Bryan M. Gaensler ◽  
C.-Y. Ng ◽  
Anne J. Green

AbstractRadio continuum emission from the supernova remnant G296.5 + 10.0 was observed using the Australia Telescope Compact Array. Using a 104 MHz bandwidth split into 13 × 8 MHz spectral channels, it was possible to produce a pixel-by-pixel image of Rotation Measure (RM) across the entire remnant. A lack of correlation between RM and X-ray surface brightness reveals that the RMs originate from outside the remnant. Using this information, we will characterise the smooth component of the magnetic field within the supernova remnant and attempt to probe the magneto-ionic structure and turbulent scale sizes in the ISM and galactic halo along the line-of-sight.


2014 ◽  
pp. 41-51 ◽  
Author(s):  
Horta de ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
F.H. Stootman ◽  
T.G. Pannuti ◽  
...  

We present an analysis of a new Australia Telescope Compact Array (ATCA) radio-continuum observation of supernova remnant (SNR) G1.9+0.3, which at an age of ~181?25 years is the youngest known in the Galaxy. We analysed all available radio-continuum observations at 6-cm from the ATCA and Very Large Array. Using this data we estimate an expansion rate for G1.9+0.3 of 0.563%?0.078% per year between 1984 and 2009. We note that in the 1980's G1.9+0.3 expanded somewhat slower (0.484% per year) than more recently (0.641% per year). We estimate that the average spectral index between 20-cm and 6-cm, across the entire SNR is ?={0.72?0.26 which is typical for younger SNRs. At 6-cm, we detect an average of 6% fractionally polarised radio emission with a peak of 17%?3%. The polarised emission follows the contours of the strongest of X-ray emission. Using the new equipartition formula we estimate a magnetic field strength of B?273?G, which to date, is one of the highest magnetic field strength found for any SNR and consistent with G1.9+0.3 being a very young remnant.


2008 ◽  
Vol 25 (4) ◽  
pp. 161-166 ◽  
Author(s):  
D. I. Jones ◽  
R. J. Protheroe ◽  
R. M. Crocker

AbstractWe report radio continuum observations with the Australia Telescope Compact Array of two molecular clouds. The impetus for these observations is a search for synchrotron radiation by cosmic-ray secondary electrons/positrons in a region of enhanced density and possibly high magnetic field. We present modelling which shows that there should be an appreciable flux of synchrotron above the more diffuse, galactic synchrotron background.The starless core G333.125–0.562 and infrared source IRAS15596–5301 were observed at 1384 and 2368 MHz. For G333.125–0.562, we find no significant levels of radio emission from this source at either frequency, nor any appreciable polarisation: we place an upper limit on the radio continuum flux from this source of 0.5 mJy beam−1 at both 1384 and 2368 MHz. Due to the higher than expected flux density limits, we also obtained archival ATCA data at 8640 MHz for this cloud and place an upper limit on the flux density of 50 μJy beam−1. Assuming the cosmic ray spectrum is similar to that near the Sun and given the cloud's molecular density and mass, we place an upper limit on the magnetic field of 500 μG.IRAS 15596–5301, with an RMS of 50 μJy beam−1 at 1384 MHz, shows an HII region consistent with optically thin free–free emission already detected at 4800 MHz. We use the same prescription as G333 to constrain the magnetic field from this cloud to be less than 500 μG. We find that these values are not inconsistent with the view that magnetic field values scale with the average density of the molecular cloud.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


2007 ◽  
Vol 3 (S242) ◽  
pp. 180-181
Author(s):  
M. A. Trinidad ◽  
S. Curiel ◽  
J. M. Torrelles ◽  
L. F. Rodríguez ◽  
V. Migenes ◽  
...  

AbstractWe present simultaneous observations of continuum (3.5 and 1.3cm) and water maser line emission (1.3cm) carried out with the VLA-A toward the high-mass object IRAS 23139+5939. We detected two radio continuum sources at 3.5cm separated by 0”5 (~2400 AU), I23139 and I23139S. Based on the observed continuum flux density and the spectral index, we suggest that I23139 is a thermal radio jet associated with a high-mass YSO. On the other hand, based on the spatio-kinematical distribution of the water masers, together with the continuum emission information, we speculate that I23139S is also a jet source powering some of the masers detected in the region.


2020 ◽  
Vol 496 (2) ◽  
pp. 1834-1844
Author(s):  
P Lundqvist ◽  
N Lundqvist ◽  
C Vlahakis ◽  
C-I Björnsson ◽  
J R Dickel ◽  
...  

ABSTRACT We present observations of the pulsar-wind nebula (PWN) region of SNR 0540-69.3. The observations were made with the Atacama Compact Array (ACA) in Bands 4 and 6. We also add radio observations from the Australia Compact Array at 3 cm. For 1.449–233.50 GHz, we obtain a synchrotron spectrum $F_{\nu } \propto \nu ^{-\alpha _{\nu }}$, with the spectral index αν = 0.17 ± 0.02. To conclude how this joins the synchrotron spectrum at higher frequencies, we include hitherto unpublished AKARI mid-infrared data, and evaluate published data in the ultraviolet (UV), optical, and infrared (IR). In particular, some broad-band filter data in the optical must be discarded from our analysis due to contamination by spectral line emission. For the UV/IR part of the synchrotron spectrum, we arrive at $\alpha _{\nu } = 0.87^{+0.08}_{-0.10}$. There is room for 2.5 × 10−3 M⊙ of dust with a temperature of ∼55 K if there are dual breaks in the synchrotron spectrum, one around ∼9 × 1010 Hz and another at ∼2 × 1013 Hz. The spectral index then changes at ∼9 × 1010 Hz from αν = 0.14 ± 0.07 in the radio to $\alpha _{\nu } = 0.35^{-0.07}_{+0.05}$ in the millimetre-to-far-IR range. The ACA Band 6 data marginally resolve the PWN. In particular, the strong emission $\text{$\sim$} 1\hbox{$.\!\!^{\prime \prime }$}5$ south-west of the pulsar, seen at other wavelengths, and resolved in the 3 cm data with its 0.″8 spatial resolution, is also strong in the millimetre range. The ACA data clearly reveal the supernova remnant shell ∼20–35 arcsec west of the pulsar, and for the shell we derive αν = 0.64 ± 0.05 for the range 8.6–145 GHz.


2000 ◽  
Vol 540 (2) ◽  
pp. 842-850 ◽  
Author(s):  
F. Yusef‐Zadeh ◽  
Mark Shure ◽  
Mark Wardle ◽  
N. Kassim

2018 ◽  
Vol 616 ◽  
pp. A98 ◽  
Author(s):  
L. Supan ◽  
G. Castelletti ◽  
W. M. Peters ◽  
N. E. Kassim

We have identified a new supernova remnant (SNR), G51.04+0.07, using observations at 74 MHz from the Very Large Array Low-Frequency Sky Survey Redux (VLSSr). Earlier, higher frequency radio continuum, recombination line, and infrared data had correctly inferred the presence of nonthermal radio emission within a larger, complex environment including ionised nebulae and active star formation. However, our observations have allowed us to redefine at least one SNR as a relatively small source (7.′5 × 3′in size) located at the southern periphery of the originally defined SNR candidate G51.21+0.11. The integrated flux density of G51.04+0.07 at 74 MHz is 6.1 ± 0.8 Jy, while its radio continuum spectrum has a slope α = −0.52 ± 0.05 (S v ∝ vα), typical of a shell-type remnant. We also measured spatial variations in the spectral index between 74 and 1400 MHz across the source, ranging from a steeper spectrum (α = −0.50 ± 0.04) coincident with the brightest emission to a flatter component (α = −0.30 ± 0.07) in the surrounding fainter region. To probe the interstellar medium into which the redefined SNR is likely evolving, we have analysed the surrounding atomic and molecular gas using the 21 cm neutral hydrogen (HI) and 13CO(J = 1 − 0) emissions. We found that G51.04+0.07 is confined within an elongated HI cavity and that its radio emission is consistent with the remains of a stellar explosion that occurred ~6300 yr ago at a distance of 7.7 ± 2.3 kpc. Kinematic data suggest that the newly discovered SNR lies in front of HII regions in the complex, consistent with the lack of a turnover in the low frequency continuum spectrum. The CO observations revealed molecular material that traces the central and northern parts of G51.04+0.07. The interaction between the cloud and the radio source is not conclusive and motivates further study. The relatively low flux density (~1.5 Jy at 1400 MHz) of G51.04+0.07 is consistent with this and many similar SNRs lying hidden along complex lines of sight towards inner Galactic emission complexes. It would also not be surprising if the larger complex studied here hosted additional SNRs.


2020 ◽  
Vol 638 ◽  
pp. A78
Author(s):  
Hao Peng ◽  
Zhongzu Wu ◽  
Bo Zhang ◽  
Yongjun Chen ◽  
Xingwu Zheng ◽  
...  

We present results from VLBI observations of continuum and OH line emission in IRAS 02524+2046 as well as arcsecond-scale radio properties of this galaxy using VLA archive data. We found that there is no significant detection of radio continuum emission from VLBI observations. The arcsecond-scale radio images of this source show no clear extended emission. The total radio flux density at L and C bands are approximately 2.9 mJy and 1.0 mJy, respectively, which indicates a steep radio spectral index between the two bands. A steep spectral index, low brightness temperature, and high q-ratio (i.e., the far-infrared to the radio flux density), which are three critical indicators in the classification of radio activity in the nuclei of galaxies, are all consistent with the classification of this source as a starburst galaxy from its optical spectrum. The high-resolution line profile reveals that we detected both the 1665 MHz and 1667 MHz OH maser lines, which show two and three clear components, respectively. The channel maps show that the maser emission are distributed in a region of ∼210 pc × 90 pc. The detected maser components in different regions indicate similar double spectral features, which might be evidence that this galaxy is at a stage of major merger as seen from the optical morphology.


2019 ◽  
Vol 632 ◽  
pp. A13 ◽  
Author(s):  
Y. Stein ◽  
R.-J. Dettmar ◽  
M. Weżgowiec ◽  
J. Irwin ◽  
R. Beck ◽  
...  

Context. The radio continuum halos of edge-on spiral galaxies have diverse morphologies, with different magnetic field properties and cosmic ray (CR) transport processes into the halo. Aims. Using the Continuum HAloes in Nearby Galaxies – an EVLA Survey (CHANG-ES) radio continuum data from the Karl G. Jansky Very Large Array (VLA) in two frequency bands, 6 GHz (C-band) and 1.5 GHz (L-band), we analyzed the radio properties, including polarization and the transport processes of the CR electrons (CREs), in the edge-on spiral galaxy NGC 4013. Supplementary LOw-Frequency ARray (LOFAR) data at 150 MHz are used to study the low-frequency properties of this galaxy and X-ray data are used to investigate the central region. Methods. We determined the total radio flux densities (central source, disk, halo and total) as well as the radio scale heights of the radio continuum emission at both CHANG-ES frequencies and at the LOFAR frequency. We derived the magnetic field orientation from CHANG-ES polarization data and rotation measure synthesis (RM synthesis). Furthermore, we used the revised equipartition formula to calculate the magnetic field strength. Lastly, we modeled the processes of CR transport into the halo with the 1D SPINNAKER model. Results. The central point source dominates the radio continuum emission with a mean of ∼35% of the total flux density emerging from the central source in both CHANG-ES bands. Complementary X-ray data from Chandra show one dominant point source in the central part. The XMM-Newton spectrum shows hard X-rays, but no clear AGN classification is possible at this time. The radio continuum halo of NGC 4013 in C-band is rather small, while the low-frequency LOFAR data reveal a large halo. The scale height analysis shows that Gaussian fits, with halo scale heights of 1.2 kpc in C-band, 2.0 kpc in L-band, and 3.1 kpc at 150 MHz, better represent the intensity profiles than do exponential fits. The frequency dependence gives clear preference to diffusive CRE transport. The radio halo of NGC 4013 is relatively faint and contributes only 40% and 56% of the total flux density in C-band and L-band, respectively. This is less than in galaxies with wind-driven halos. While the SPINNAKER models of the radio profiles show that advection with a launching velocity of ∼20 km s−1 (increasing to ∼50 km s−1 at 4 kpc height) fits the data equally well or slightly better, diffusion is the dominating transport process up to heights of 1–2 kpc. The polarization data reveal plane-parallel, regular magnetic fields within the entire disk and vertical halo components indicating the presence of an axisymmetric field having a radial component pointing outwards. The mean magnetic field strength of the disk of NGC 4013 of 6.6 μG is rather small. Large-scale vertical fields are observed in the halo out to heights of about 6 kpc. Conclusions. The interaction and the low star formation rate (SFR) across the disk of NGC 4013 probably influence the appearance of its radio continuum halo and are correlated with the low total magnetic field strength. Several observable quantities give consistent evidence that the CR transport in the halo of NGC 4013 is diffusive: the frequency dependence of the synchrotron scale height, the disk/halo flux density ratio, the vertical profile of the synchrotron spectral index, the small propagation speed measured modeled with SPINNAKER, and the low temperature of the X-ray emitting hot gas.


Sign in / Sign up

Export Citation Format

Share Document