scholarly journals Atacama Compact Array observations of the pulsar-wind nebula of SNR 0540-69.3

2020 ◽  
Vol 496 (2) ◽  
pp. 1834-1844
Author(s):  
P Lundqvist ◽  
N Lundqvist ◽  
C Vlahakis ◽  
C-I Björnsson ◽  
J R Dickel ◽  
...  

ABSTRACT We present observations of the pulsar-wind nebula (PWN) region of SNR 0540-69.3. The observations were made with the Atacama Compact Array (ACA) in Bands 4 and 6. We also add radio observations from the Australia Compact Array at 3 cm. For 1.449–233.50 GHz, we obtain a synchrotron spectrum $F_{\nu } \propto \nu ^{-\alpha _{\nu }}$, with the spectral index αν = 0.17 ± 0.02. To conclude how this joins the synchrotron spectrum at higher frequencies, we include hitherto unpublished AKARI mid-infrared data, and evaluate published data in the ultraviolet (UV), optical, and infrared (IR). In particular, some broad-band filter data in the optical must be discarded from our analysis due to contamination by spectral line emission. For the UV/IR part of the synchrotron spectrum, we arrive at $\alpha _{\nu } = 0.87^{+0.08}_{-0.10}$. There is room for 2.5 × 10−3 M⊙ of dust with a temperature of ∼55 K if there are dual breaks in the synchrotron spectrum, one around ∼9 × 1010 Hz and another at ∼2 × 1013 Hz. The spectral index then changes at ∼9 × 1010 Hz from αν = 0.14 ± 0.07 in the radio to $\alpha _{\nu } = 0.35^{-0.07}_{+0.05}$ in the millimetre-to-far-IR range. The ACA Band 6 data marginally resolve the PWN. In particular, the strong emission $\text{$\sim$} 1\hbox{$.\!\!^{\prime \prime }$}5$ south-west of the pulsar, seen at other wavelengths, and resolved in the 3 cm data with its 0.″8 spatial resolution, is also strong in the millimetre range. The ACA data clearly reveal the supernova remnant shell ∼20–35 arcsec west of the pulsar, and for the shell we derive αν = 0.64 ± 0.05 for the range 8.6–145 GHz.

2010 ◽  
pp. 43-49 ◽  
Author(s):  
L.M. Bozzetto ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
I.S. Bojicic ◽  
J.L. Payne ◽  
...  

We present a detailed study and results of new Australia Telescope Compact Array (ATCA) observations of supernova remnant SNR J0527-6549. This Large Magellanic Cloud (LMC) object follows a typical supernova remnant (SNR) horseshoe morphology with a diameter of D=(66?58)?1 pc which is among the largest SNRs in the LMC. Its relatively large size indicates older age while a steeper than expected radio spectral index of ?=-0.92?0.11 is more typical of younger and energetic SNRs. Also, we report detections of regions with a high order of polarization at a peak value of ~54%?17% at 6 cm.


2012 ◽  
pp. 69-76 ◽  
Author(s):  
L.M. Bozzetto ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
Horta de ◽  
M. Stupar

We present a study of new Australian Telescope Compact Array (ATCA) observations of supernova remnant, SNR J0536-6735. This remnant appears to follow a shell morphology with a diameter of D=36x29 pc (with 1 pc uncertainty in each direction). There is an embedded HII region on the northern limb of the remnant which made various analysis and measurements (such as flux density, spectral index and polarisation) difficult. The radio-continuum emission followed the same structure as the optical emission, allowing for extent and flux density estimates at 20 cm. We estimate the surface brightness at 1 GHz of 2.55x10?21 Wm?2 Hz?1 sr?1 for the SNR. Also, we detect a distinctive radio-continuum point source which confirms the previous suggestion of this remnant being associated with pulsar wind nebula (PWN). The tail of this remnant is not seen in the radio-continuum images and is only seen in the optical and X-ray images.


1983 ◽  
Vol 101 ◽  
pp. 341-342
Author(s):  
Ma Er ◽  
Richard G. Strom

Observations have been made of the supernova remnant 3C 58 with the Westerbork Synthesis Radio Telescope at 6 and 49 cm. These measurements provide us with greater resolution and sensitivity than that attained with previously published data. The 49 cm map has been used for comparison with an existing 21 cm one (Wilson and Weiler, 1976) to obtain information on the spectral index, rotation measure and depolarization. The 6 cm map is valuable both for its greater resolution, and for comparing with an observation made with the same instrument eight years previously. The total intensity distribution is shown in Figure 1.


2009 ◽  
pp. 55-60 ◽  
Author(s):  
K.O. Cajko ◽  
E.J. Crawford ◽  
M.D. Filipovic

We present the results of new Australia Telescope Compact Array (ATCA) observations of one of the largest supernova remnants, SNR J0450-709, in the Local Group of galaxies. We found that this Large Magellanic Cloud (LMC) object exhibits a typical morphology of an old supernova remnant (SNR) with diameter D=102x75?1 pc and radio spectral index ?=-0.43?0.06. Regions of high polarization were detected with peak value of ~40%.


2005 ◽  
Vol 192 ◽  
pp. 89-95
Author(s):  
L. Staveley-Smith ◽  
R.N. Manchester ◽  
B.M. Gaensler ◽  
M.J. Kesteven ◽  
A.K. Tzioumis ◽  
...  

SummarySN1987A has an intrinsic radio luminosity some four orders of magnitude less than SN1993J at maximum, largely a reflection of the tenuous wind . from the progenitor of SN1987A before explosion. Both remnants have an edge-brightened, ring-like morphology though, in the case of SN1987A, the expansion rate is currently only around 3500 km s−1. The flux density of the remnant of SN1987A continues to rise at all measured radio frequencies. Its spectral index is gradually flattening, indicating its transition into the supernova remnant phase. A campaign to increase the resolution of radio imaging by observing at higher frequencies is underway with the Australia Telescope Compact Array (ATCA).


2006 ◽  
Vol 2 (S235) ◽  
pp. 96-96
Author(s):  
C. Feinstein ◽  
F. D. Macchetto ◽  
M. F. Montero ◽  
G. F. Hägele

AbstractWe present preliminary results of the Gemini/GMOS longslit spectra for four radiogalaxies: 3C 135, 3C 180, 3C 234 and 3C 284. These objects are a subsample of a set of galaxies with noticeable extended structure selected from the HST/WFPC2 3CR Snapshot Survey, data taken with the filters F555W, F702W and narrow-ramp. All of these objects show large regions of [Oiii]λ5007 emission (narrow ramp filter) and the broad-band filters data show similar structures indicating the presence of strong emission in several lines over these regions. The morphology observed seems to be related (e.g. same position angle, direct overlapping or similar shape) with the radio-jet. For some candidates with these properties GMOS/Gemini spectroscopy was taken. These data (both HST direct imaging and Gemini spectroscopy) can be tested with diagnostic diagrams and total UV photons budget to understand the source of energy that is ionizing the gas. This source of ionization was commonly believed to be the UV photons emitted by the powerful AGN, but several of these objects shows clearly that shocks produce by the radio jet are the main cause of the observed gas line emission.


2012 ◽  
Vol 3 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Valery M. Shulga ◽  
S. Y. Zubrin ◽  
V. V. Myshenko

2001 ◽  
Vol 379 (1) ◽  
pp. 323-323 ◽  
Author(s):  
H. Alvarez ◽  
J. Aparici ◽  
J. May ◽  
P. Reich

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


Sign in / Sign up

Export Citation Format

Share Document