scholarly journals Improvement the DTC system for electric vehicles induction motors

2010 ◽  
Vol 7 (2) ◽  
pp. 149-165 ◽  
Author(s):  
Ali Arif ◽  
Achour Betka ◽  
Abderezak Guettaf

A three-phase squirrel-cage induction motor is used as a propulsion system of an electric vehicle (EV). Two different control methods have been designed. The first is based on the conventional DTC Scheme adapted for three level inverter. The second is based on the application of fuzzy logic controller to the DTC scheme. The motor is controlled at different operating conditions using a FLC based DTC technique. In the simulation the novel proposed technique reduces the torque and current ripples. The EV dynamics are taken into account.

2021 ◽  
Vol 23 (2) ◽  
pp. 87-94
Author(s):  
Mahdi Atig ◽  
Mustapha Bouheraoua ◽  
Rabah Khaldi

The aim of this paper is to estimate the induction motor temperature at both steady and transient thermal states under healthy and faulty conditions. The distribution of the temperature in the motor is calculated using thermal models based on the 2D Lumped Parameter Thermal Network (LPTN). The thermal model takes into account the heat sources, convection heat transfer and the thermal resistances in the motor. The heat flow generated by the conduction and convection in a three-phase squirrel cage induction motor is discussed. The developed model is used to study the motor thermal behavior during the opening phase situation. The results obtained by the model developed are validated by experimental tests. The tested machine is a standard three-phase, 4-pole, 2.2 kW, 380 V squirrel cage induction motor of Totally Enclosed Fan Cooled “TEFC” design manufactured in Algeria by Electro-Industries company. The simulated temperatures so obtained are in good agreement with the measured ones, and the 2D Lumped Parameter Thermal Network study seems to be appropriate to characterize the heating of the active parts of the machine under different operating conditions.


2021 ◽  
Author(s):  
Jonathan M. Tabora ◽  
Edson O. de Matos ◽  
Thiago M. Soares ◽  
Maria Emília De L. Tostes

More than 30 million electric motors are sold every year in the world, in the last 20 years the appearance of more efficient electric motors resulted in the replacement of more than 70% of the old motors installed. New technologies are being presented by manufacturers as substitutes for the squirrel cage induction motor (SCIM). Given this scenario, studies should be carried out to analyze the performance of these motors in the same operating conditions to know their main advantages and drawbacks. This study presents a comparison of the performance of electric motors classes IE2, IE3 and IE4 in the presence of voltage unbalance (VU) with under and over voltage. Results show that not only the unbalance percentage present impacts the motor performance, but also the magnitudes of the voltages present. The VU also results in an increase in the harmonics present in each motor, mainly in the permanent magnet hybrid motor, which presents non-linear characteristics.


Sign in / Sign up

Export Citation Format

Share Document