scholarly journals Titania powder activation and rutile ceramics structure formation

2009 ◽  
Vol 41 (1) ◽  
pp. 27-33 ◽  
Author(s):  
I.R. Ziganshin ◽  
S.E. Porozova ◽  
A.E. Stolina ◽  
M.F. Torsunov

Impact of mechanochemical activation (MCA) in aqueous medium with various organic additives on commercial titania powder and products made of it has been investigated by X-ray diffraction, optical microscopy and Raman spectroscopy. Agar-agar additive has been shown to offer promise for activation of titania powders used in obtaining both dense and porous materials.

2005 ◽  
Vol 126 ◽  
pp. 101-105 ◽  
Author(s):  
B. Moulin ◽  
L. Hennet ◽  
D. Thiaudière ◽  
P. Melin ◽  
P. Simon

2020 ◽  
Vol 18 (1) ◽  
pp. 951-961
Author(s):  
Qiuju Chen ◽  
Tao Hui ◽  
Hongjuan Sun ◽  
Tongjiang Peng ◽  
Wenjin Ding

AbstractVarious morphologies of magnesium carbonate hydrate had been synthesized without using any organic additives by carefully adjusting the reaction temperature and time during the talc carbonation process. At lower temperatures, magnesium carbonate hydrate was prone to display needle-like morphology. With the further increase of the carbonation temperature, the sheet-like crystallites became the preferred morphology, and at higher aging temperatures, these crystallites tended to assemble into layer-like structures with diverse morphologies, such as rose-like particles and nest-like structure. The reaction time had no effect on the crystal morphology, but it affected the particle size and situation of the crystal growth. X-Ray diffraction results showed that these various morphologies were closely related to their crystal structure and compositions. The needle-like magnesium carbonate hydrate had a formula of MgCO3·3H2O, whereas with the morphological transformation from needle-like to sheet-like, rose-like, and nest-like structure, their corresponding compositions also changed from MgCO3·3H2O to 4MgCO3·Mg(OH)2·8H2O, 4MgCO3·Mg(OH)2·5H2O, and 4MgCO3·Mg(OH)2·4H2O.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 507 ◽  
Author(s):  
Maxim Rudmin ◽  
Elshan Abdullayev ◽  
Alexey Ruban ◽  
Ales Buyakov ◽  
Bulat Soktoev

We investigated the mechanochemical synthesis of complex slow release fertilizers (SRF) derived from glauconite. We studied the effectiveness of the mechanical intercalation of urea into glauconite using planetary and ring mills. The potassium-nitric complex SRFs were synthesized via a mechanochemical method mixing glauconite with urea in a 3:1 ratio. The obtained composites were analyzed using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence analysis, and infrared spectroscopy. The results show that as duration of mechanochemical activation increases, the mineralogical, chemical, and structural characteristics of composites change. Essential modifications associated with a decrease in absorbed urea and the formation of microcrystallites were observed when the planetary milling time increased from 5 to 10 min and the ring milling from 15 to 30 min. Complete intercalation of urea into glauconite was achieved by 20 min grinding in a planetary mill or 60 min in a ring mill. Urea intercalation in glauconite occurs much faster when using a planetary mill compared to a ring mill.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
L. Bourja ◽  
B. Bakiz ◽  
A. Benlhachemi ◽  
M. Ezahri ◽  
J. C. Valmalette ◽  
...  

A series of ceramics samples belonging to theCeO2-Bi2O3phase system have been prepared via a coprecipitation route. The crystallized phases were obtained by heating the solid precursors at600∘Cfor 6 hours, then quenching the samples. X-ray diffraction analyses show that forx<0.20a solid solutionCe1−xBixO2−x/2with fluorine structure is formed. For x ranging between 0.25 and 0.7, a tetragonalβ′phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new tetragonalβphase appears. Theβ′phase is postulated to be a superstructure of theβphase. Finally, close tox=1, the classical monoclinicα Bi2O3structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0 and 1.


IUCrJ ◽  
2014 ◽  
Vol 1 (2) ◽  
pp. 136-150 ◽  
Author(s):  
Palash Sanphui ◽  
Geetha Bolla ◽  
Ashwini Nangia ◽  
Vladimir Chernyshev

Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR),p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.


2021 ◽  
Vol 545 ◽  
pp. 152751
Author(s):  
Marie-Noëlle de Noirfontaine ◽  
Enrique Garcia-Caurel ◽  
Daniel Funes-Hernando ◽  
Mireille Courtial ◽  
Sandrine Tusseau-Nenez ◽  
...  

2012 ◽  
Vol 192 ◽  
pp. 356-359 ◽  
Author(s):  
Ye Wu ◽  
Qian Zhang ◽  
Xiang Wu ◽  
Shan Qin ◽  
Jing Liu

2009 ◽  
Vol 106 (3) ◽  
pp. 034108 ◽  
Author(s):  
H. Bouyanfif ◽  
J. Wolfman ◽  
M. El Marssi ◽  
Y. Yuzyuk ◽  
R. Bodeux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document