scholarly journals Incompressible laminar temperature boundary layer on a body of revolution: The adiabatic case

2003 ◽  
pp. 247-264 ◽  
Author(s):  
Mira Miric-Milosavljevic ◽  
Milos Pavlovic

In the paper the universal governing equations of incompressible laminar temperature boundary layer on the sphere are obtained using the improved method of general similarity for the case of adiabatic boundary conditions. Universal solutions in one parametric approximation for Pr=1 and Pr=0.72 are obtained by numerical integration. Calculated universal functions for temperature boundary layer are presented graphically. As an example eigen-temperature of the sphere are calculated and discussed.

2006 ◽  
Vol 33 (2) ◽  
pp. 91-106 ◽  
Author(s):  
Milos Pavlovic

Introducing the group of Loitskanskii [1] form-parameters and transformations of Saljnikov [2], the set of governing equations of the in compressible laminar temperature boundary layer was transformed in the universal form, with Prandtl number as parameter, for the case of the constant wall temperature. Using the universal results for air (Pr=0.72) the procedure for calculation of the Nusselt number (dimensionless heat transfer coefficient) on the particular contour (airfoil NACA 0010-34) was developed. The dimensionless temperature profiles within the boundary layer were presented also. The parameter of rotation ?0, as well as Eckert number, was varied, and their influences on the heat transfer from the surface to the working fluid were presented and analyzed. .


2019 ◽  
Vol 213 ◽  
pp. 02002
Author(s):  
Pavel Antoš ◽  
Sergei Kuznetsov

Boundary layer on a uniformly heated flat plate was studied experimentally. Both, the velocity boundary layer and the temperature boundary layer, was investigated by means of hot-wire anemometry. A probe with parallel wires was used for velocity-temperature measurement. Experiment was performed in the closed-circuit wind tunnel with several levels of heat flux at the wall. The wall temperature was set up in the interval from 20 ºC to 200 ºC.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Lin Liu ◽  
Liancun Zheng ◽  
Yanping Chen ◽  
Fawang Liu

The paper gives a comprehensive study on the space fractional boundary layer flow and heat transfer over a stretching sheet with variable thickness, and the variable magnetic field is applied. Novel governing equations with left and right Riemann–Liouville fractional derivatives subject to irregular region are formulated. By introducing new variables, the boundary conditions change as the traditional ones. Solutions of the governing equations are obtained numerically where the shifted Grünwald formulae are applied. Good agreement is obtained between the numerical solutions and exact solutions which are constructed by introducing new source items. Dynamic characteristics with the effects of involved parameters on the velocity and temperature distributions are shown and discussed by graphical illustrations. Results show that the velocity boundary layer is thicker for a larger fractional parameter or a smaller magnetic parameter, while the temperature boundary layer is thicker for a larger fractional parameter, a smaller exponent parameter, or a larger magnetic parameter. Moreover, it is thicker at a smaller y and thinner at a larger y for the velocity boundary layer with a larger exponent parameter while for the velocity and temperature boundary layers with a smaller weight coefficient.


1978 ◽  
Vol 15 (3) ◽  
pp. 289-300 ◽  
Author(s):  
Th. Foken ◽  
S. A. Kitajgorodskij ◽  
O. A. Kuznecov

Author(s):  
Leizhi Wang ◽  
Yongjun Zhou ◽  
Zhaobo Chen

AbstractThe heat transfer of a reactor with improved Intermig impellers was numerically investigated by the finite element method (FEM) simulation software Fluent (V.19). A turbulence model utilized the standard k-ε model, and the turbulent flows in two large vortexes between vertical tubes were collided to form a strong convection. The influence of heat and mass transfer developing from the impeller diameters, the distance between the two impellers (C1), the rotational speed and the installation height of the bottom impeller (C2) were studied. The reactor was equipped with special structure vertical tubes to increase the heat exchange areas. The rate of heat transfer, including criteria such as the convective heat transfer coefficient, the Nusselt number of outside vertical tubes, and the temperature boundary layer thickness, assured the accurate control of the heat exchange mixing state. The experimental testing platform was designed to validate the simulated results, which revealed the influence order of related factors. The Nusselt number Nu was affected by various related factors, resulting in the rotation and diameter of impellers extending far beyond the distance between the two impellers (C1) and the installation height of the impeller (C2). The average temperature boundary layer thicknesses of the symmetrical and middle sections were 3.24 mm and 3.48 mm, respectively. Adjusting the appropriate parameters can accurately control the heat exchange process in such a reactor, and the conclusions provide a significant reference for engineering applications.


Sign in / Sign up

Export Citation Format

Share Document