scholarly journals The Dirihlet problem for the fractional Poisson’s equation with Caputo derivatives: A finite difference approximation and a numerical solution

2012 ◽  
Vol 16 (2) ◽  
pp. 385-394 ◽  
Author(s):  
V.D. Beibalaev ◽  
R.P. Meilanov

A finite difference approximation for the Caputo fractional derivative of the 4-?, 1 < ? ? 2 order has been developed. A difference schemes for solving the Dirihlet?s problem of the Poisson?s equation with fractional derivatives has been applied and solved. Both the stability of difference problem in its right-side part and the convergence have been proved. A numerical example was developed by applying both the Liebman and the Monte-Carlo methods.

Author(s):  
N.H. Sweilam ◽  
T.A. Assiri

In this paper, the space fractional wave equation (SFWE) is numerically studied, where the fractional derivative is defined in the sense of Caputo. An explicit finite difference approximation (EFDA) for SFWE is presented. The stability and the error analysis of the EFDA are discussed. To demonstrate the effectiveness of the approximated method, some test examples are presented.   


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Venu Gopal ◽  
R. K. Mohanty ◽  
Navnit Jha

We propose a three-level implicit nine point compact finite difference formulation of order two in time and four in space direction, based on nonpolynomial spline in compression approximation in -direction and finite difference approximation in -direction for the numerical solution of one-dimensional wave equation in polar coordinates. We describe the mathematical formulation procedure in detail and also discussed the stability of the method. Numerical results are provided to justify the usefulness of the proposed method.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 322
Author(s):  
Ricardo Almeida ◽  
Ravi P. Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

A fractional model of the Hopfield neural network is considered in the case of the application of the generalized proportional Caputo fractional derivative. The stability analysis of this model is used to show the reliability of the processed information. An equilibrium is defined, which is generally not a constant (different than the case of ordinary derivatives and Caputo-type fractional derivatives). We define the exponential stability and the Mittag–Leffler stability of the equilibrium. For this, we extend the second method of Lyapunov in the fractional-order case and establish a useful inequality for the generalized proportional Caputo fractional derivative of the quadratic Lyapunov function. Several sufficient conditions are presented to guarantee these types of stability. Finally, two numerical examples are presented to illustrate the effectiveness of our theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mostafa Abbaszadeh ◽  
Mehdi Dehghan ◽  
Mahmoud A. Zaky ◽  
Ahmed S. Hendy

A numerical solution for neutral delay fractional order partial differential equations involving the Caputo fractional derivative is constructed. In line with this goal, the drift term and the time Caputo fractional derivative are discretized by a finite difference approximation. The energy method is used to investigate the rate of convergence and unconditional stability of the temporal discretization. The interpolation of moving Kriging technique is then used to approximate the space derivative, yielding a meshless numerical formulation. We conclude with some numerical experiments that validate the theoretical findings.


2011 ◽  
Vol 14 (02) ◽  
pp. 197-219 ◽  
Author(s):  
CHRISTIAN P. FRIES ◽  
MARK S. JOSHI

In this paper, we present a generic method for the Monte-Carlo pricing of (generalized) auto-callable products (aka. trigger products), i.e., products for which the payout function features a discontinuity with a (possibly) stochastic location (the trigger) and value (the payout). The Monte-Carlo pricing of products with discontinuous payout is known to come with a high Monte-Carlo error. The numerical calculation of sensitivities (i.e., partial derivatives) of such prices by finite differences gives very noisy results, since the Monte-Carlo approximation (being a finite sum of discontinuous functions) is not smooth. Additionally, the Monte-Carlo error of the finite-difference approximation explodes as the shift size tends to zero. Our method combines a product specific modification of the underlying numerical scheme, which is to some extent similar to an importance sampling and/or partial proxy simulation scheme and a reformulation of the payoff function into an equivalent smooth payout. From the financial product we merely require that hitting of the stochastic trigger will result in an conditionally analytic value. Many complex derivatives can be written in this form. A class of products where this property is usually encountered are the so called auto-callables, where a trigger hit results in cancellation of all future payments except for one redemption payment, which can be valued analytically, conditionally on the trigger hit. From the model we require that its numerical implementation allows for a calculation of the transition probability of survival (i.e., non-trigger hit). Many models allows this, e.g., Euler schemes of Itô processes, where the trigger is a model primitive. The method presented is effective across a large range of cases where other methods fail, e.g. small finite difference shift sizes or short time to trigger reset (approaching maturity); this means that a practitioner can use this method and be confident that it will work consistently. The method itself can be viewed as a generalization of the method proposed by Glasserman and Staum (2001), both with respect to the type (and shape) of the boundaries, as well as, with respect to the class of products considered. In addition we explicitly consider the calculation of sensitivities.


2021 ◽  
Vol 36 (3) ◽  
pp. 157-163
Author(s):  
Alexander V. Lapin ◽  
Vladimir V. Shaidurov

Abstract A new mathematical model of the diffusion–convective process with ‘memory along the flow path’ is proposed. This process is described by a homogeneous one-dimensional Dirichlet initial-boundary value problem with a fractional derivative along the characteristic curve of the convection operator. A finite-difference approximation of the problem is constructed and investigated. The stability estimates for finite-difference schemes are proved. The accuracy estimates are given for the case of sufficiently smooth input data and the solution.


2015 ◽  
Vol 12 (06) ◽  
pp. 1550041 ◽  
Author(s):  
Faoziya Al-Shibani ◽  
Ahmad Ismail

In this paper, two compact implicit finite difference methods are developed and analyzed for solving the one-dimensional time fractional diffusion equation. The temporal derivative is approximated by using Grünwald–Letnikov formula. Compact finite difference approximation is used for the second-order derivative in space. The local truncation errors are discussed. The stability analysis and the convergence of the proposed methods are investigated by means of Fourier series method. A comparison between the results of these methods and the exact solution is made. Numerical tests are given to verify the feasibility and accuracy of the methods.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


Sign in / Sign up

Export Citation Format

Share Document