scholarly journals Study of the environmental performance of end-of-life tyre recycling through a simplified mathematical approach

2012 ◽  
Vol 16 (3) ◽  
pp. 889-899 ◽  
Author(s):  
Usón Aranda ◽  
Germán Ferreira ◽  
Zabalza Bribián ◽  
Zambrana Vásquez

The End of life tyres (ELTs) management generates CO2 eq emissions due to the involved processes. Therefore, this research has been conducted with the aim of quantifying the environmental performance of an ELTs management system, in terms of CO2 eq emissions, which includes the recycling operation through the ELTs treatment plant, the transport system and the secondary raw material derived from ELTs processing; apart from other different ELTs recovery methods. To this end, the environmental performance method based on Life Cycle Assessment (LCA) and complemented with the Clarke and Wright's saving algorithm has been developed in order to evaluate and optimise the location of the ELTs treatment plants. To validate the proposed method, the Autonomous Community of Arag?n in Spain is shown as a case study. Different ELTs management scenarios have been analyzed for the Arag?n?s ELTs treatment plant and the optimisation of transportation of the baseline scenario is carried out by means of the Clarke and Wright algorithm. By applying the proposed methodology it has been identified that the current location of the Aragonese treatment plant has benefits in net CO2 eq emissions for the different radii studied with a maximum of 200 km. On the other hand, The Clarke and Wright method has been applied in order to obtain the transportation optimization of the total travelled distance from the 42 collection/sorting centres to the treatment plant. As a result, the travelled distance can be reduced about 15%.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Adilson C. Paula Junior ◽  
Cláudia Jacinto ◽  
Thaís M. Oliveira ◽  
Antonio E. Polisseni ◽  
Fabio M. Brum ◽  
...  

The search for environmental preservation and conservation of natural resources gives rise to new concepts and viable technical solutions on the path to sustainable development. In this context, this study’s main objective is to analyse the influence of recycled concrete aggregates (RCAs) on the development of pervious concrete, whose use as a floor covering represents an excellent device to mitigate the urban soil sealing phenomena. For this, mechanical and hydraulic tests were carried out, in addition to microstructural analyses and the assessment of its environmental performance. The results obtained were compared to reference studies also involving the incorporation of recycled aggregates. A pilot-scale case study was conducted, involving a parking space lined with pervious concrete moulded “in situ”. In laboratory tests, permeability coefficients and mechanical strengths compatible with the literature and above the normative limit for light traffic were found. The case study demonstrated higher permeability than in the laboratory, but the flexural strength was lower, being indicated only for pedestrian traffic. The environmental assessment showed that the RCA represents a positive contribution to the environmental performance of pervious concrete. Still, attention should be given to the recycled aggregate transport distance between the concrete plant and the RCA treatment plant.


1998 ◽  
Vol 37 (3) ◽  
pp. 121-128 ◽  
Author(s):  
José M. P. Vieira ◽  
José L. S. Pinho ◽  
António A. L. S. Duarte

River Cavado water quality variability was studied for eutrophication vulnerability assessment at a new surface water supply intake. Since the river flow regime is artificially controlled by upstream multipurpose reservoirs, mathematical modelling was applied in evaluating alternative management scenarios. Due to the fact that surface water quality at intake location is mainly affected by a wastewater treatment plant effluent discharge 5 km upstream, algae and nutrients concentration simulations have been worked out in order to identify critical situations. Different algal concentration profiles along the river were obtained for local conditions of light energy, water temperature and estimated nutrient loads, showing high probability of eutrophication occurrence for some of the simulated scenarios. The discussion of results of this study appears to be very useful for river basin wide water management policies evaluation.


2012 ◽  
Vol 65 (10) ◽  
pp. 1781-1788 ◽  
Author(s):  
X. Dong ◽  
S. Zeng ◽  
J. Chen ◽  
D. Zhao

Due to sustained economic growth in China over the last three decades, urbanization has been on a rapidly expanding track. In recent years, regional industrial relocations were also accelerated across the country from the east coast to the west inland. These changes have led to a large-scale redesign of urban infrastructures, including the drainage system. To help the reconstructed infrastructures towards a better sustainability, a tool is required for assessing the efficiency and environmental performance of different renovation schemes. This paper developed an integrated dynamic modeling tool, which consisted of three models for describing the sewer, the wastewater treatment plant (WWTP) and the receiving water body respectively. Three auxiliary modules were also incorporated to conceptualize the model, calibrate the simulations, and analyze the results. The developed integrated modeling tool was applied to a case study in Shenzhen City, which is one of the most dynamic cities and facing considerable challenges for environmental degradation. The renovation scheme proposed to improve the environmental performance of Shenzhen City's urban drainage system was modeled and evaluated. The simulation results supplied some suggestions for the further improvement of the renovation scheme.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanjin Liu ◽  
Giraldo Eugenio

Cultured bacteria addition is one of the technologies used for odor control and FOG (fat, oil, and grease) removal in wastewater collection systems. This study investigated the efficiency of bacterial addition on wastewater odor control by conducting a set of full scale trials in a 60,000 cubic meter per day system for a period of two years. The objectives of this study were: (i) to identify factors that could impact wastewater treatment plant (WWTP) operations due to the effect of bacterial addition in the collection system, (ii) to estimate/understand the level of those impacts, and (iii) to present some interesting findings from the completed case study. The plant operation data before and during the bacterial addition were reviewed. The application of the cultured bacteria presented in the study was found to have significant impacts on the operation of the WWTP in terms of influent biological oxygen demand (BOD) and total suspended solids (TSS) loading, primary settling, sludge production, energy use, dissolved sulfides concentration, and methane production.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 161-168 ◽  
Author(s):  
J. Einfeldt

A process, called Bio-Denipho, for combined biological phosphorus and nitrogen removal in a combination of an anaerobic tank and two oxidation ditches is described. In this process the anaerobic tank consisting of three sections working in series is followed by two oxidation ditches. These too are working in series, but with both inlet to and outlet from the tanks changing in a cycle. The Bio-Denipho process is described specifically for the process itself and as a case study for the implementation of the process on a 265,000 pe wastewater treatment plant for the city of Aalborg in Denmark. The plant was designed and erected in two stages and the last stage was inaugurated October 31,1989. Lay-out and functions for the plant is described and design loads, plan lay-out and tank volumes are given in this paper together with performance data for the first year in operation.


Sign in / Sign up

Export Citation Format

Share Document