Environmental performance of alternative end-of-life scenarios for electrical and electronic equipment: A case study for vacuum cleaners

2017 ◽  
Vol 159 ◽  
pp. 158-170 ◽  
Author(s):  
Victoria Pérez-Belis ◽  
Conny Bakker ◽  
Pablo Juan ◽  
María D. Bovea
2012 ◽  
Vol 16 (3) ◽  
pp. 889-899 ◽  
Author(s):  
Usón Aranda ◽  
Germán Ferreira ◽  
Zabalza Bribián ◽  
Zambrana Vásquez

The End of life tyres (ELTs) management generates CO2 eq emissions due to the involved processes. Therefore, this research has been conducted with the aim of quantifying the environmental performance of an ELTs management system, in terms of CO2 eq emissions, which includes the recycling operation through the ELTs treatment plant, the transport system and the secondary raw material derived from ELTs processing; apart from other different ELTs recovery methods. To this end, the environmental performance method based on Life Cycle Assessment (LCA) and complemented with the Clarke and Wright's saving algorithm has been developed in order to evaluate and optimise the location of the ELTs treatment plants. To validate the proposed method, the Autonomous Community of Arag?n in Spain is shown as a case study. Different ELTs management scenarios have been analyzed for the Arag?n?s ELTs treatment plant and the optimisation of transportation of the baseline scenario is carried out by means of the Clarke and Wright algorithm. By applying the proposed methodology it has been identified that the current location of the Aragonese treatment plant has benefits in net CO2 eq emissions for the different radii studied with a maximum of 200 km. On the other hand, The Clarke and Wright method has been applied in order to obtain the transportation optimization of the total travelled distance from the 42 collection/sorting centres to the treatment plant. As a result, the travelled distance can be reduced about 15%.


2018 ◽  
Vol 203 ◽  
pp. 1067-1084 ◽  
Author(s):  
María D. Bovea ◽  
Valeria Ibáñez-Forés ◽  
Pablo Juan ◽  
Victoria Pérez-Belis ◽  
Marta Braulio-Gonzalo

Resources ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Konrad Schoch ◽  
Christa Liedtke ◽  
Katrin Bienge

The demand for metals from the entire periodic table is currently increasing due to the ongoing digitalization. However, their use within electrical and electronic equipment (EEE) poses problems as they cannot be recovered sufficiently in the end-of-life (EoL) phase. In this paper, we address the unleashed dissipation of metals caused by the design of EEE for which no globally established recycling technology exists. We describe the European Union’s (EU) plan to strive for a circular economy (CE) as a political response to tackle this challenge. However, there is a lack of feedback from a design perspective. It is still unknown what the implications for products would be if politics were to take the path of a CE at the level of metals. To provide clarification in this respect, a case study for indium is presented and linked to its corresponding recycling-metallurgy of zinc and lead. As a result, a first material-specific rule on the design of so-called “anti-dissipative” products is derived, which actually supports designing EEE with recycling in mind and represents an already achieved CE on the material level. In addition, the design of electrotechnical standardization is being introduced. As a promising tool, it addresses the multi-dimensional problems of recovering metals from urban ores and assists in the challenge of enhancing recycling rates. Extending the focus to other recycling-metallurgy besides zinc and lead in further research would enable the scope for material-specific rules to be widened.


2021 ◽  
Vol 13 (17) ◽  
pp. 9924
Author(s):  
Terje Andersen ◽  
Bjørn Jæger

In the transition to a circular focus on electric and electronic products, manufacturers play a key role as the originators of both the products and the information about the products. While the waste electric and electronic equipment (WEEE) directive’s contemporary focus is on handling the product as waste after its end of life, the circular economy focuses on retaining the product’s value with a restorative system. The polluter-pays principle requires producers of pollution to bear the costs of handling the pollution, leading to the extended producer responsibility (EPR) principle. This requires manufacturers to change their focus from their current passive role of out-sourcing end-of-life treatment to taking explicit responsibility for product management over an extended period of time. This paper investigates how a manufacturer can assume its responsibility to achieve circularity for its products. Based on our findings, three fundamental circularity principles, the circular electric and electronic equipment (CEEE) principles, for manufactures of electronic and electrical equipment are defined: (1) Serialize product identifiers, (2) data controlled by their authoritative source at the edge, and (3) independent actors’ access to edge data via a distributer ledger are the foundation of the Edge and Distributed Ledger (Edge&DL) model. We demonstrate the model through a case study of how to achieve circularity for lighting equipment. The CEEE principles and the demonstrated model contribute to building new circularity systems for electronic and electric products that let manufacturers undertake their extended product responsibility.


Author(s):  
Marie-Pascale Chagny ◽  
John A. Naoum

Abstract Over the years, failures induced by an electrostatic discharge (ESD) have become a major concern for semiconductor manufacturers and electronic equipment makers. The ESD events that cause destructive failures have been studied extensively [1, 2]. However, not all ESD events cause permanent damage. Some events lead to recoverable failures that disrupt system functionality only temporarily (e.g. reboot, lockup, and loss of data). These recoverable failures are not as well understood as the ones causing permanent damage and tend to be ignored in the ESD literature [3, 4]. This paper analyzes and characterizes how these recoverable failures affect computer systems. An experimental methodology is developed to characterize the sensitivity of motherboards to ESD by simulating the systemlevel ESD events induced by computer users. The manuscript presents a case study where this methodology was used to evaluate the robustness of desktop computers to ESD. The method helped isolate several weak nets contributing to the failures and identified a design improvement. The result was that the robustness of the systems improved by a factor of 2.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


Sign in / Sign up

Export Citation Format

Share Document