scholarly journals Effects of the conduit geometry on the air flow field in the spunbonding process

2015 ◽  
Vol 19 (4) ◽  
pp. 1457-1458
Author(s):  
Li-Li Wu ◽  
Hong-Mei Sun ◽  
Ting Chen

In the spunbonding process, the air flow field of the drawing conduit affects the polymer drawing and therefore the filament diameter greatly. Effects of the conduit parameters on the air flow field are studied using the previously established air flow field model. The results show that longer narrow section, longer contracting section and larger height of narrow entry are of benefit to increasing the air velocity, thus helpful for decreasing the filament diameter.

2020 ◽  
Vol 13 (3) ◽  
pp. 189-195
Author(s):  
Jia-Jia Liu ◽  
Ting Chen ◽  
Li-Li Wu

Background and Objective: The air-flow field of the air centrifugal spinning is simulated and measured. The simulated air velocities coincide well with the measured ones, confirming the correctness of the air-flow field model. Methods: The polymer drawing in the air-flow field of the air centrifugal spinning is modeled and simulated. Effects of the rotation speed and initial air velocity on the diameter and radius vector of the threadline are investigated. Results: The air velocity is found to decrease with the increase of the distance away from the nozzle exit. Simulation results show that both larger rotation speed and higher initial air velocity can reduce the threadline diameter. Conclusion: The radius vector of the threadline increases rapidly with the increase of the initial air velocity, which is helpful to reduce the threadline diameter.


2010 ◽  
Vol 136 ◽  
pp. 5-9
Author(s):  
B. Zhao

The air jet flow field models of spunbonding process are founded. It is simulated by means of the finite difference method. The numerical simulation computation results of distributions of the air velocity match quite well with the experimental data. The air drawing model of polymer is solved with the help of the distributions of the air velocity measured by a particle image velocimetry. The predicted filament fiber diameter agrees with the experimental data well.


2015 ◽  
Vol 19 (4) ◽  
pp. 1473-1474
Author(s):  
Li-Li Wu ◽  
Kang Yang ◽  
Ting Chen

A polymer drawing model is established for the spunbonding process through numerical computation of the air flow field. The results show that the model predicts the filament diameter effectively. The paper contributes to in-depth understanding of the spunbonding technology.


2018 ◽  
Vol 22 (4) ◽  
pp. 1589-1593 ◽  
Author(s):  
Chen-Yang Xu ◽  
Li-Li Wu ◽  
Ting Chen

The air-flow field of the circumferentially arranged nozzle group is modeled and simulated. The air velocity distribution is measured using a hot wire anemometer. The results show that the simulated velocities coincide with the measured ones, confirming the effectiveness of the model. Larger rotating speeds can yield larger air velocities, indicating that introducing auxiliary air is favorable to the polymer drawing in the centrifugal spinning.


2015 ◽  
Vol 19 (4) ◽  
pp. 1443-1444
Author(s):  
Li-Li Wu ◽  
Hong-Mei Sun ◽  
Ting Chen

The air flow field of the drawing conduit in the spunbonding process has a great effect on the polymer drawing, the filament diameter and orientation. A numerical simulation of the process is carried out, and the results are compared with the experimental data, showing good accuracy of the numerical prediction. This research lays an important foundation for the optimal design of the drawing conduit in the spunbonding process.


2018 ◽  
Vol 89 (15) ◽  
pp. 3150-3158
Author(s):  
Kayla A Foley ◽  
Robert L Shambaugh

Airfields are used in common polymer fiber spinning processes, such as melt blowing and spunbonding. A pair of louvers was installed in the air flow field of a melt blowing slot die. Previous research work has shown that, with louvers in place, the air velocity along the fiber threadline is higher than the velocity when louvers are not used. Since the air velocity is what drives the spinning process, the presence of louvers was expected to increase the attenuation of the molten filaments and thus improve the melt blowing process. Melt blowing runs were made with variable louver size (chord), louver separation, louver distance from the die face, the angle of the louvers relative to the die face, and air flow rate. Fibers were collected and fiber diameters were measured.


e-Polymers ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 337-342 ◽  
Author(s):  
Xin Sanfa ◽  
Wang Xinhou

AbstractThe effect of the angle of dual slots on an air flow field in melt blowing was researched via numerical simulation. Through establishing the geometric model of air flow field in melt blowing with dual slots, meshing, designating the boundary conditions and their parameters and numerical simulation, the result illustrates the influence of the angle of dual slots on the variations of air velocity, pressure and temperature distributions. Higher peak values of air velocity, pressure and temperature are obtained with larger angles of dual slots near the die, while only a few differences of these parameters are detected away from the die. Our results demonstrate the angle of 70° is the appropriate one that can produce the finest fibers.


2011 ◽  
Vol 332-334 ◽  
pp. 1347-1351
Author(s):  
Xu Chuan ◽  
Li Li Wu

In this paper, the air jet flow field model for the dual slot die is established. The flow field from the blunt die was found to exhibit that as the jet angle becomes sharper, width of the die slot and distance between the inside edges of both jets more narrow, the mean velocity under the die increases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Taibai Xu ◽  
Yaoming Li

The threshing and cleaning device in the grain combine harvester is located in the same airtight space, and the air flow field in it should also be studied and tested as a whole system. In order to study the distribution of air flow field and the influence of working parameters on the air flow field in the internal space of threshing and cleaning system, the method of predicting harvest performance indexes (grain loss rate and grain impurity rate) by air flow field analysis was explored. First of all, taking the longitudinal grain combine harvester of our research group as the test object and taking the rotating speed of centrifugal fan, the angle of fan plate, the opening of chaffer, and the rotating speed of threshing cylinder as the research factors, the internal space flow channel model of threshing and cleaning system under different working conditions was established and CFD software was used to simulate and analyze the air flow field. At the same time, the hot wire anemometer is used to measure and verify the distribution of air flow field in the threshing and cleaning system under various working conditions. Then, the harvest performance index of the threshing and cleaning system under the rated feeding rate is tested under the corresponding working conditions to find the relationship between the distribution of air flow field and harvest performance, put forward the corresponding analysis and prediction methods, and establish the mathematical relationship model between the simulated air flow field and harvest performance index. The results of simulation and experiment show that the average air velocity can more accurately reflect the cleaning performance. The mathematical function of the relation curve is Y = 11.71X − 4.76, and the prediction error is within 9.4%. The air velocity in the middle area of the vibrating screen is approximately in proportion to the cleaning performance, which provides the theoretical and experimental basis for the design of the threshing and cleaning device and the adjustment of the working parameters in the field harvest. In addition, it can save the design time and cost and reduce the seasonal impact of field experiment.


2015 ◽  
Vol 713-715 ◽  
pp. 47-50
Author(s):  
Hao Li ◽  
Zhi Jun Zou ◽  
Fei Wang

Air velocity in oven box is an important factor. The value of air velocity will affect the result of drying. This paper use the method of numerical simulation to research the effect of orifice plate on flow field and thermal environment in oven box. The results show the change rate of thermal environment & air flow field in oven box is depend on supply air volume, and the use of orifice plate will affect the flow field obviously.


Sign in / Sign up

Export Citation Format

Share Document