scholarly journals Analysis and modeling of the effects of process parameters on specific cutting energy in abrasive water jet cutting

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1459-1470 ◽  
Author(s):  
Predrag Jankovic ◽  
Milos Madic ◽  
Dusan Petkovic ◽  
Miroslav Radovanovic

The problem of cutting difficult-to-machine materials used in the aerospace industry, aircraft industry, and automobile industry, led to the development and application one of today?s most attractive technology for contour cutting - abrasive water jet cutting. For the efficient use of abrasive water jet cutting, it is of great importance to analyze the impact of process parameters on performance indicators, such as cutting quality, productivity, and costs. But also, from the energy utilization point of view, it is very important to analyze the impact of these parameters on the specific cutting energy which represents the amount of energy spent on the removal of material in the unit time. Having this in mind, this study presents the experimental results of abrasive water jet cutting of aluminum alloy with the aim of creating a mathematical model for estimating specific cutting energy as an important indicator of the degree of utilization of the available energy in the cutting process. The mathematical model of the specific cutting energy is explicitly represented as a non-linear function of the process parameters, obtained by the artificial neural network.

Author(s):  
Jana Moravčíková ◽  
Daynier Rolando Delgado Sobrino ◽  
Peter Košťál

Abstract The present paper discusses the impact of the speed of an abrasive water jet cutting process on some surface properties and morphology of the S235JRG1 steel. The values of the cutting speeds used for the analysis were of 100, 150 and 200 mm.min−1 respectively. A contact profile method was used to analyze the surface roughness during the conducted tests. In this study, the observed surface roughness parameters were the Ra, Rt and Rz, respectively. At the same time, these parameters were measured in three positions, i.e.: at the inlet (A), in the middle (B) and at the exit position (C) of the water jet nozzle with respect to the machined material. The experimental study showed that the roughness of the surface reached higher peaks and was more pronounced at the exit position (C) of the water jet. Similarly, it was also concluded that a better quality of the surface was achieved at a speed of 150 mm.min−1.


Sign in / Sign up

Export Citation Format

Share Document