Influence of selected process parameters of the abrasive water-jet cutting for geometric accuracy and quality of cylindrical holes

Mechanik ◽  
2015 ◽  
pp. 715/308-715/312
Author(s):  
Sławomir Spadło ◽  
Daniel Krajcarz ◽  
Dominik Dudek
2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1459-1470 ◽  
Author(s):  
Predrag Jankovic ◽  
Milos Madic ◽  
Dusan Petkovic ◽  
Miroslav Radovanovic

The problem of cutting difficult-to-machine materials used in the aerospace industry, aircraft industry, and automobile industry, led to the development and application one of today?s most attractive technology for contour cutting - abrasive water jet cutting. For the efficient use of abrasive water jet cutting, it is of great importance to analyze the impact of process parameters on performance indicators, such as cutting quality, productivity, and costs. But also, from the energy utilization point of view, it is very important to analyze the impact of these parameters on the specific cutting energy which represents the amount of energy spent on the removal of material in the unit time. Having this in mind, this study presents the experimental results of abrasive water jet cutting of aluminum alloy with the aim of creating a mathematical model for estimating specific cutting energy as an important indicator of the degree of utilization of the available energy in the cutting process. The mathematical model of the specific cutting energy is explicitly represented as a non-linear function of the process parameters, obtained by the artificial neural network.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 997-999
Author(s):  
Rafał Kudelski

Quality of the technological part is one of the major problems of modern machine manufacturing. In many cases, components are manufactured from new construction materials with specific properties that are considered difficult to machining applying conventional technologies. Hence, to search for new technologies, including high-pressure abrasive water jet cutting in the context of the S355J2H steel elements manufacture, while maintaining the quality requirements of the machining, is the need. The results of tests on the accuracy of components made of S355J2H steel are presented as dependent on the water jet pressure, cutting feedrate and the amount of abrasive dozed, with constant element thickness. The accuracy of the design measure – regardless of dimensional accuracy – was the magnitude of the lateral sagging of the cut workpiece resulting from the specific mechanism of water jet removal mechanism.


2018 ◽  
Vol 178 ◽  
pp. 03004 ◽  
Author(s):  
Ioan Alexandru Popan ◽  
Nicolae Balc ◽  
Alina Popan ◽  
Alexandru Carean

The main objective of the paper consists in remanufacturing of a part, through Abrasive Water Jet Cutting, using a method of reverse engineering based on 3D scanning. The characteristics of this process, the equipment and the main applications are presented. The research starts with manufacturing of a master model made by CFRP. This master model is a complex part cut by abrasive water jet cutting. In scanning process was used the 3D Scanner Artec Space Spider and the point cloud was processed using Artec Studio 11 software. By using this new 3D model was manufactured a new part, with the same setup. The quality characteristics (accuracy and surface quality) of this part was compared with the master model. The paper presents the advantages and disadvantages of this reverse engineering method applied on abrasive water jet cutting process.


Mechanik ◽  
2017 ◽  
Vol 90 (1) ◽  
pp. 64-65 ◽  
Author(s):  
Daniel Krajcarz ◽  
Sławomir Spadło

This paper discusses experimental results concerning the geometric accuracy of cylindrical holes. The input variables were the cutting speed, the distance between the abrasive water jet nozzle and the workpiece, and the abrasive mass flow rate. The output variables were roundness deviation, which were measured in three sections. The holes were made in aluminum alloy by a high-pressure jet of water containing almandine garnet as an abrasive substance.


Sign in / Sign up

Export Citation Format

Share Document